Estimation in the Complementary Exponential Geometric Distribution Based on Progressive Type-II Censored Data  

在线阅读下载全文

作  者:Ozlem GürünlüAlma Reza Arabi Belaghi 

机构地区:[1]Department of Statistics,Faculty of Sciences,Muğla SıtkıKoçman University,Muğla,Turkey [2]Department of Statistics,Faculty of Mathematical Sciences,University of Tabriz,Tabriz,Iran

出  处:《Communications in Mathematics and Statistics》2020年第4期409-441,共33页数学与统计通讯(英文)

摘  要:Complementary exponential geometric distribution has many applications in survival and reliability analysis.Due to its importance,in this study,we are aiming to estimate the parameters of this model based on progressive type-II censored observations.To do this,we applied the stochastic expectation maximization method and Newton-Raphson techniques for obtaining the maximum likelihood estimates.We also considered the estimation based on Bayesian method using several approximate:MCMC samples,Lindely approximation and Metropolis-Hasting algorithm.In addition,we considered the shrinkage estimators based on Bayesian and maximum likelihood estimators.Then,the HPD intervals for the parameters are constructed based on the posterior samples from the Metropolis-Hasting algorithm.In the sequel,we obtained the performance of different estimators in terms of biases,estimated risks and Pitman closeness via Monte Carlo simulation study.This paper will be ended up with a real data set example for illustration of our purpose.

关 键 词:Bayesian analysis Complementary exponential geometric(CEG)distribution Progressive type-II censoring Maximum likelihood estimators SEM algorithm Shrinkage estimator 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象