Domain estimation under informative linkage  

在线阅读下载全文

作  者:Ray Chambers Nicola Salvati Enrico Fabrizi Andrea Diniz da Silva 

机构地区:[1]School of Mathematics and Applied Statistics,National Institute for Applied Statistics Research Australia,University of Wollongong,Wollongong,NSW 2522,Australia [2]Dipartimento di Economia e Management,Universita di Pisa,Pisa,Italy [3]Dipartimento di Scienze Economiche e Sociali,Universita Cattolica del S.Cuore,Milan,Italy [4]dInstituto Brasileiro de Geografia e Estatística&Escola Nacional de Ciências Estatísticas–ENCE,Rio de Janeiro,Brazil

出  处:《Statistical Theory and Related Fields》2019年第2期90-102,共13页统计理论及其应用(英文)

摘  要:A standard assumption when modelling linked sample data is that the stochastic properties of the linking process and process underpinning the population values of the response variable are independent of one another.This is often referred to as non-informative linkage.But what if linkage errors are informative?In this paper,we provide results from two simulation experiments that explore two potential informative linking scenarios.The first is where the choice of sample record to link is dependent on the response;and the second is where the probability of correct linkage is dependent on the response.We focus on the important and widely applicable problem of estimation of domain means given linked data,and provide empirical evidence that while standard domain estimation methods can be substantially biased in the presence of informative linkage errors,an alternative estimation method,based on a Gaussian approximation to a maximum likelihood estimator that allows for non-informative linkage error,performs well.

关 键 词:Non-deterministic data linkage exchangeable linkage errors informative sampling auxiliary information domain estimation maximum likelihood 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象