检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Li-Chun Zhang
机构地区:[1]S3RI/University of Southampton,Highfield SO171BJ,Southampton,UK
出 处:《Statistical Theory and Related Fields》2019年第2期103-113,共11页统计理论及其应用(英文)
摘 要:We examine the conditions under which descriptive inference can be based directly on theobserved distribution in a non-probability sample, under both the super-population and quasirandomisation modelling approaches. Review of existing estimation methods reveals that thetraditional formulation of these conditions may be inadequate due to potential issues of undercoverage or heterogeneous mean beyond the assumed model. We formulate unifying conditions that are applicable to both types of modelling approaches. The difficulties of empiricallyvalidating the required conditions are discussed, as well as valid inference approaches usingsupplementary probability sampling. The key message is that probability sampling may still benecessary in some situations, in order to ensure the validity of descriptive inference, but it can bemuch less resource-demanding given the presence of a big non-probability sample.
关 键 词:Non-informative selection prediction model calibration inverse propensity weighting sample matching model misspecification
分 类 号:TG1[金属学及工艺—金属学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42