机构地区:[1]西南林业大学机械与交通学院,昆明650224 [2]昆明理工大学材料科学与工程学院,昆明650093
出 处:《表面技术》2021年第9期254-260,共7页Surface Technology
基 金:云南省农业基础研究联合专项基金(2018FG001-062);云南省教育厅科学研究基金研究生项目(2021Y222)。
摘 要:目的通过稀土元素掺杂Cu-Zr非晶合金,开发远离典型共晶型合金Cu-Zr共晶点的新型非晶合金,探索性能优异的生物质燃油新能源汽车新型活塞材料。方法采用单辊旋淬法制备了(Cu_(56)Zr_(44))_(1-x)Gd_(x)(x=0,0.01,0.05,0.09)试样,通过X射线衍射仪和扫描电子显微镜对试样的物相结构和形貌进行分析,通过量热分析仪和纳米压痕仪对试样的热力学性能以及力学性能进行研究,在乙醇汽油稀释机油润滑下检测试样的摩擦学性能。结果通过单辊旋淬法制备的(Cu_(56)Zr_(44))_(1-x)Gd_(x)试样为完全非晶组织,当锆(Gd)掺杂量从1%(原子数分数)增至9%时,(Cu_(56)Zr_(44))_(1-x)Gd_(x)非晶试样的约化玻璃转变温度T_(rg)从0.668降至0.653,纳米硬度从8.73 GPa降至7.18 GPa,但均优于0%Gd非晶试样的0.644和6.82 GPa。在相同摩擦实验条件下,当Gd掺杂量从1%增加到9%时,(Cu_(56)Zr_(44))_(1-x)Gd_(x)非晶试样的摩擦因数和磨损率分别从0.068和1.07×10^(-5)mm^(3)/(N·m)降低到0.076和1.42×10^(-5)mm^(3)/(N·m),但是都优于0%Gd非晶试样的0.082和1.62×10^(-5)mm^(3)/(N·m),更是远低于ZL109铝合金的0.095和75.47×10^(-5)mm^(3)/(N·m)。结论Gd掺杂能有效地增强体系的非晶形成能力(GFA,Glass forming ability)和力学性能,极大地改善体系的摩擦学性能,且在掺杂1%Gd时,性能达到最佳。(Cu_(56)Zr_(44))_(1-x)Gd_(x)非晶合金的减摩抗磨性能也远优于活塞常用材料ZL109铝合金。Cu-Zr amorphous alloy doped with rare earth elements in order to develop a novel type of amorphous alloy whose composition is far away from the eutectic point of the typical eutectic alloy Cu-Zr and explore a novel and excellent performance piston material used biomass fuel new energy vehicle.The(Cu_(56)Zr_(44))_(1-x)Gd_(x)(x=0,0.01,0.05,0.09)samples were prepared by the single-roller rapid quenching and the phases,the phase structure and morphology of the sample were analyzed by X-ray diffractometer and scanning electron microscope,and the thermodynamic and mechanical properties of the sample were studied by calorimetric analyzer and nanoindentation.Meanwhile,the tribological properties of the samples under ethanolgasoline diluted engine oil were measured.The(Cu_(56)Zr_(44))_(1-x)Gd_(x)samples prepared by the single-roll spin quenching method is completely amorphous.When Gd content increases from 1at.%to 9at.%,the reduced glass transition temperature T_(rg)of the(Cu_(56)Zr_(44))_(1-x)Gd_(x)amorphous samples decrease from 0.668 to 0.653 and their nano-hardness decreased from 8.73 GPa to 7.18 GPa,but both are better than 0.644 and 6.82 GPa of 0at.%Gd amorphous sample.When the Gd doping content increases from 1at.%to 9at.%,under the same friction experiment conditions,the friction factor and wear rate of(Cu_(56)Zr_(44))_(1-x)Gd_(x)amorphous samples decrease from 0.068 and 1.07×10^(-5)mm^(3)/(N·m),respectively to 0.076 and 1.42×10^(-5)mm^(3)/(N·m),but both are better than 0.082 and 1.62×10^(-5)mm^(3)/(N·m)of 0at.%Gd amorphous sample,and are far lower than 0.095 and 75.47×10^(-5)mm^(3)/(N·m)of ZL109 aluminum alloy.Gd doping can effectively enhance the glass forming ability(GFA)and mechanical properties of the system,greatly improve the tribological properties of the system,and achieve the best performance when doped with 1at.%Gd.The(Cu_(56)Zr_(44))_(1-x)Gd_(x)amorphous alloy anti-friction and anti-wear performance are also much better than that of ZL109 aluminum alloy,which is commonly used in pistons.
关 键 词:Cu-Zr基非晶合金 GD掺杂 GFA 力学性能 摩擦学性能
分 类 号:TG115[金属学及工艺—物理冶金] TH117[金属学及工艺—金属学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...