检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李鑫灵 袁梅[1,2] 董洪 陈国洪 许石青 隆能增[1] LI Xinling;YUAN Mei;DONG Hong;CHEN Guohong;XU Shiqing;LONG Nengzeng(Mining College of Guizhou University,Guiyang 550025,China;Engineering Center for Safe Mining Technology Under Complex Geologic Conditions,Guiyang 550025,China;Guizhou Linhua Mining Co.,Ltd.,Bijie 551700,China)
机构地区:[1]贵州大学矿业学院,贵州贵阳550025 [2]复杂地质矿山开采安全技术工程中心,贵州贵阳550025 [3]贵州林华矿业有限公司,贵州毕节551700
出 处:《煤矿安全》2021年第9期90-95,共6页Safety in Coal Mines
基 金:贵州省科技支撑计划资助项目(黔科合支撑[2018]2789),贵州省科技支撑计划资助项目(黔科合支撑[2019]2887);国家自然科学基金资助项目(51864009)。
摘 要:为实现掘进工作面煤与瓦斯突出风险快速、准确预警,借助工作面瓦斯涌出特征与突出"三要素"之间变化关系建立了含地应力系数、瓦斯体积分数及瓦斯涌出系数等参数的实时预警指标体系;将SVM、PSO 2种算法结合构建了PSO-SVM突出预警模型,界定了突出预警等级标签的划分原则;在此基础上融合Spark大数据平台开发了掘进工作面突出预警系统,系统包括模型管理、风险识别及Spark配置等8个模块。以贵州某矿掘进工作面监测监控系统为数据源,筛选其中1 059组预警指标及对应预警等级标签导入数据挖掘模型进行智能化学习及训练,并将系统应用于该掘进工作面突出风险预警。运行结果表明突出预警模型测试集的预测精度为92%,系统能在工作面突出动力现象发生前22 min准确预警。In order to realize rapid and accurate warning of tunneling faces gas outburst risk, based on the relationship between the characteristics of gas emission in working face and the "three elements"of outburst, a real-time early warning index system including in-situ stress coefficient, gas concentration and gas emission coefficient was established. We combine the SVM and PSO algorithms to build the PSO-SVM outburst warning model, defines the classification principles of outburst warning labels. On this basis,?an outburst warning system of heading face is developed by integrating Spark big data platform. The system includes 8 modules, such as model management, risk identification and Spark configuration. Taking the monitoring and control system of heading face in a mine in Guizhou as the data source, 1059 groups of early-warning indicators and corresponding early-warning grade labels were selected and imported into the data mining model for intelligent learning and training, and the system was applied to the outburst risk early-warning of the heading face. The operation results show that the prediction accuracy of the outburst warning model test set is 92%, and the system can accurately predict the outburst dynamic phenomenon 22 min before the occurrence of the working face.
关 键 词:煤与瓦斯突出 瓦斯异常涌出 PSO-SVM模型 大数据平台 预警系统 预警指标
分 类 号:TD712[矿业工程—矿井通风与安全]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.237.31