ZERO KINEMATIC VISCOSITY-MAGNETIC DIFFUSION LIMIT OF THE INCOMPRESSIBLE VISCOUS MAGNETOHYDRODYNAMIC EQUATIONS WITH NAVIER BOUNDARY CONDITIONS  

在线阅读下载全文

作  者:Fucai LI Zhipeng ZHANG 栗付才;张志朋(Department of Mathematics,Nanjing University,Nanjing 210093,China;Institute of Applied Physics and Computational Mathematics,Beijing 100088,China)

机构地区:[1]Department of Mathematics,Nanjing University,Nanjing 210093,China [2]Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

出  处:《Acta Mathematica Scientia》2021年第5期1503-1536,共34页数学物理学报(B辑英文版)

基  金:supported partially by NSFC(11671193,11971234);supported partially by the China Postdoctoral Science Foundation(2019M650581).

摘  要:We investigate the uniform regularity and zero kinematic viscosity-magnetic diffusion limit for the incompressible viscous magnetohydrodynamic equations with the Navier boundary conditions on the velocity and perfectly conducting conditions on the magnetic field in a smooth bounded domain Ω⊂R^(3).It is shown that there exists a unique strong solution to the incompressible viscous magnetohydrodynamic equations in a finite time interval which is independent of the viscosity coefficient and the magnetic diffusivity coefficient.The solution is uniformly bounded in a conormal Sobolev space and W^(1,∞)(Ω)which allows us to take the zero kinematic viscosity-magnetic diffusion limit.Moreover,we also get the rates of convergence in L^(∞)(0,T;L^(2)),L^(∞)(0,T;W^(1,p))(2≤p<∞),and L^(∞)((0,T)×Ω)for some T>0.

关 键 词:incompressible viscous MHD equations ideal incompressible MHD equations Navier boundary conditions zero kinematic viscosity-magnetic diffusion limit 

分 类 号:O361.3[理学—流体力学] O175[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象