检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Fucai LI Zhipeng ZHANG 栗付才;张志朋(Department of Mathematics,Nanjing University,Nanjing 210093,China;Institute of Applied Physics and Computational Mathematics,Beijing 100088,China)
机构地区:[1]Department of Mathematics,Nanjing University,Nanjing 210093,China [2]Institute of Applied Physics and Computational Mathematics,Beijing 100088,China
出 处:《Acta Mathematica Scientia》2021年第5期1503-1536,共34页数学物理学报(B辑英文版)
基 金:supported partially by NSFC(11671193,11971234);supported partially by the China Postdoctoral Science Foundation(2019M650581).
摘 要:We investigate the uniform regularity and zero kinematic viscosity-magnetic diffusion limit for the incompressible viscous magnetohydrodynamic equations with the Navier boundary conditions on the velocity and perfectly conducting conditions on the magnetic field in a smooth bounded domain Ω⊂R^(3).It is shown that there exists a unique strong solution to the incompressible viscous magnetohydrodynamic equations in a finite time interval which is independent of the viscosity coefficient and the magnetic diffusivity coefficient.The solution is uniformly bounded in a conormal Sobolev space and W^(1,∞)(Ω)which allows us to take the zero kinematic viscosity-magnetic diffusion limit.Moreover,we also get the rates of convergence in L^(∞)(0,T;L^(2)),L^(∞)(0,T;W^(1,p))(2≤p<∞),and L^(∞)((0,T)×Ω)for some T>0.
关 键 词:incompressible viscous MHD equations ideal incompressible MHD equations Navier boundary conditions zero kinematic viscosity-magnetic diffusion limit
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.156