THE NONEMPTINESS AND COMPACTNESS OF MILD SOLUTION SETS FOR RIEMANN-LIOUVILLE FRACTIONAL DELAY DIFFERENTIAL VARIATIONAL INEQUALITIES  被引量:1

在线阅读下载全文

作  者:Yirong JIANG Zhouchao WEI Jingping LU 蒋宜蓉;魏周超;卢景苹(College of Science,Guilin University of Technology,Guilin 541004,China;School of Mathematics and Physics,China University of Geosciences(Wuhan),Wuhan 430074,China)

机构地区:[1]College of Science,Guilin University of Technology,Guilin 541004,China [2]School of Mathematics and Physics,China University of Geosciences(Wuhan),Wuhan 430074,China

出  处:《Acta Mathematica Scientia》2021年第5期1569-1578,共10页数学物理学报(B辑英文版)

基  金:supported by the National Natural Science Foundation of China(11772306);Natural Science Foundation of Guangxi Province(2018GXNSFAA281021);Guangxi Science and Technology Base Foundation(AD20159017);the Foundation of Guilin University of Technology(GUTQDJJ2017062);the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(CUGGC05).

摘  要:This paper investigates the nonemptiness and compactness of the mild solution set for a class of Riemann-Liouville fractional delay differential variational inequalities,which are formulated by a Riemann-Liouville fractional delay evolution equation and a variational inequality.Our approach is based on the resolvent technique and a generalization of strongly continuous semigroups combined with Schauder's fixed point theorem.

关 键 词:differential variational inequality Riemann-Liouville fractional delay evolution equation RESOLVENT Schauder's fixed point theorem 

分 类 号:O178[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象