ZERO DISSIPATION LIMIT TO RAREFACTION WAVES FOR THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH SELECTED DENSITY-DEPENDENT VISCOSITY  

在线阅读下载全文

作  者:Yifan SU Zhenhua GUO 苏奕帆;Zhenhua GUO;郭真华(School of Mathematics,CNS,Northwest University,Xi'an 710127,China)

机构地区:[1]School of Mathematics,CNS,Northwest University,Xi'an 710127,China

出  处:《Acta Mathematica Scientia》2021年第5期1635-1658,共24页数学物理学报(B辑英文版)

基  金:supported by the National Natural Science Foundation of China(11671319,11931013).

摘  要:This paper is devoted to studying the zero dissipation limit problem for the one-dimensional compressible Navier-Stokes equations with selected density-dependent viscosity.In particular,we focus our attention on the viscosity taking the formμ(ρ)=ρ^(ϵ)(ϵ>0).For the selected density-dependent viscosity,it is proved that the solutions of the one-dimensional compressible Navier-Stokes equations with centered rarefaction wave initial data exist for all time,and converge to the centered rarefaction waves as the viscosity vanishes,uniformly away from the initial discontinuities.New and subtle analysis is developed to overcome difficulties due to the selected density-dependent viscosity to derive energy estimates,in addition to the scaling argument and elementary energy analysis.Moreover,our results extend the studies in[Xin Z P.Comm Pure Appl Math,1993,46(5):621-665].

关 键 词:compressible Navier-Stokes equations density-dependent viscosity rarefaction wave zero dissipation limit 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象