NON-INSTANTANEOUS IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS WITH STATE DEPENDENT DELAY AND PRACTICAL STABILITY  被引量:2

在线阅读下载全文

作  者:Ravi AGARWAL Ricardo ALMEIDA Snezhana HRISTOVA Donal O'REGAN 

机构地区:[1]Department of Mathematics,Texas A&M University-Kingsville,Kingsville,TX 78363,USA [2]Distinguished University Professor of Mathematics,Florida Institute of Technology,Melbourne,FL 32901,USA [3]Center for Research and Development in Mathematics and Applications,Department of Mathematics,University of Aveiro,Portugal [4]Department of Applied Mathematics and Modeling,University of Plovdiv Paisii Hilendarski,Plovdiv,Bulgaria [5]School of Mathematics,Statistics and Applied Mathematics,National University of Ireland,Galway,Ireland

出  处:《Acta Mathematica Scientia》2021年第5期1699-1718,共20页数学物理学报(B辑英文版)

基  金:supported by Portuguese funds through the CIDMA-Center for Research and Development in Mathematics and Applications;the Portuguese Foundation for Science and Technology(FCT-Fundação para a Ciência e a Tecnologia),within project UIDB/04106/2020;Fund Scientific Research MU21FMI007,University of Plovdiv"Paisii Hilendarski".

摘  要:Nonlinear delay Caputo fractional differential equations with non-instantaneous impulses are studied and we consider the general case of delay,depending on both the time and the state variable.The case when the lower limit of the Caputo fractional derivative is fixed at the initial time,and the case when the lower limit of the fractional derivative is changed at the end of each interval of action of the impulse are studied.Practical stability properties,based on the modified Razumikhin method are investigated.Several examples are given in this paper to illustrate the results.

关 键 词:non-instantaneous impulses Caputo fractional differential equations practical stability 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象