Effects of soil shrinkage in permanent gullies formation: The case of Benggang erosion in the granite area of southern China  被引量:1

在线阅读下载全文

作  者:HUANG Wan-xia DENG Yu-song CAI Chong-fa JIANG Dai-hua 

机构地区:[1]Forestry College,Guangxi University,Nanning 530004,China [2]Resources and Environment College,Huazhong Agricultural University,Wuhan 430070,China [3]Agricultural College,Guangxi University,Nanning 530004,China

出  处:《Journal of Mountain Science》2021年第9期2328-2344,共17页山地科学学报(英文)

基  金:This study was supported by the National Natural Science Foundation of China,(Grant No.42007055,41630858)。

摘  要:Soil shrinkage is an important factor in slope destabilization in granitic areas, which is also one of the most important conditions for the formation of permanent gullies. This study explored the effect of soil shrinkage on permanent gullies, and Benggang erosion in granitic areas in southeastern China was used as an example. Three types of Benggang in granitic area were selected to examine the soil shrinkage of three soil layers(the lateritic, transitional and sandy layers) and their effect on the development of Benggang erosion was studied. The results show that the maximum values of COLEH and COLEV(coefficient of linear extensibility in horizontal and vertical directions, respectively) are 3.09% and 1.60% in the laterite layers, 2.71% and 2.13% in transition layers, and 1.10% and 1.82% in sandy layers, indicating that the shrinkage potential of the soil layers exhibits the following order, from highest to lowest: the laterite layer, transition layer, and sandy layer. With a decreasing volumetric water content, the linear shrinkage ratio increases gradually and eventually stabilizes, and in the laterite, transition and sandy layers, the average values of the maximum linear shrinkage are 1.50%, 2.09%, and 1.74%, respectively. Axial shrinkage is most obvious in the transition layers, in which the volume change in the form of subsidence is greater than that in other layers. The soil shrinkage curves fit the trilinear model(R2>0.9), and the soil shrinkage characteristic curves were divided into structural, basic, and residual sections. The correlation analysis shows that the soil shrinkage rate is positively correlated with clay and Fe2 O3 content and negatively correlated with sand content. Clay and sand contents are the most important factors influencing soil shrinkage. Soil oxides can influence soil shrinkage by affecting the particle composition of the soil, so soil shrinkage is closely related to soil clay minerals. Our findings can provide a theoretical basis for revealing the mechanism of Benggang erosion a

关 键 词:Soil shrinkage Permanent gully GRANITE Benggang Soil layers 

分 类 号:S157.1[农业科学—土壤学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象