检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗馨豫 Luo Xin-yu
机构地区:[1]中国南方电网有限责任公司超高压输电公司百色局,广西百色533000
出 处:《电力系统装备》2021年第14期144-145,共2页Electric Power System Equipment
摘 要:随着深度学习理论的广泛应用和电力系统智能运行化、调控一体化建设的不断发展与深入,将二者相结合,有助于解决电网控制与决策类复杂问题,提高电力系统运行的稳定性和可靠性。文章立足于深度学习的基本原理,从电力系统设备故障监测、暂态稳定性、电力系统运行调控等方面,分析了深度学习在当前电力自动化系统中的具体应用,并对其扩展运用场景和发展趋势进行展望,有力推动深度学习技术与智能电网建设的深度融合。With the extensive application of deep learning theory and the continuous development and deepening of the intelligent operation and control integration of the power system,the combination of the two will help solve the complex problems of grid control and decision-making,and improve the operation stability and reliability of the power system.Based on the basic principles of deep learning,this article analyzes the specific application of deep learning in the current power automation system from power system equipment failure monitoring,transient stability,power system operation control,etc.,and expands its application scenarios and looking forward to the development trend,it strongly promotes the deep integration of deep learning technology and smart grid construction.
分 类 号:TM76[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249