X波段小擦地角海杂波WW分布建模  被引量:1

WW distribution modeling of X-band sea clutter with low grazing angle

在线阅读下载全文

作  者:杨斌[1,2] 黄默 王长元 张圆圆 段涛 YANG Bin;HUANG Mo;WANG Changyuan;ZHANG Yuanyuan;DUAN Tao(Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China;University of Chinese Academy of Sciences,Beijing 100049,China;School of Microelectronics,University of Chinese Academy of Sciences,Beijing 100049,China)

机构地区:[1]中国科学院微电子研究所,北京100029 [2]中国科学院大学,北京100049 [3]中国科学院大学微电子学院,北京100049

出  处:《太赫兹科学与电子信息学报》2021年第5期916-921,共6页Journal of Terahertz Science and Electronic Information Technology

基  金:近地面探测技术重点实验室基金资助项目(TCGZ2018A001)。

摘  要:为了更好地描述X波段小擦地角海杂波建模中出现的重拖尾现象,研究WW分布建模方法及其统计特性,进而改善统计分布模型对海杂波数据的拟合效果。基于X波段海杂波实测数据,分析在不同海况和极化方式下两重韦布尔(WW)分布对海杂波实测数据的拟合效果。通过其与韦布尔分布、对数正态分布、K分布等统计分布模型拟合优度检验的对比,表明WW分布可以很好地拟合具有重拖尾现象的海杂波数据。此外,WW分布能够在不同极化域内准确地描述海杂波的统计特性,具有较好的海杂波幅度分布统计建模能力。A Weibull-Weibull(WW)distribution modeling method and its statistical characteristics are studied in order to better describe the heavy tailing phenomenon that occurs in the modeling of X-band sea clutter with low grazing angles.The fitting effect of the statistical distribution model on sea clutter data is improved.Based on the measured data of X-band sea clutter,the fitting effect of WW distribution on measured sea clutter data under different sea conditions and polarizations is analyzed.The comparison with the goodness-of-fit test of statistical distribution models such as Weibull distribution,Lognormal distribution,and K distribution shows that the WW distribution can well fit sea clutter data with heavy tailing.In addition,the WW distribution can accurately describe the statistical characteristics of sea clutter in different polarization domains,and has strong statistical modeling ability for sea clutter amplitude distribution.

关 键 词:海杂波 WW分布 小擦地角 拟合优度 统计建模 

分 类 号:TN957[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象