检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡宜娜 安如[1] 艾泽天[2] 都伟冰[3] Hu Yina;An Ru;Ai Zetian;Du Weibing(College of Hydrology and Water Resources,Hohai University,Nanjing 211100,China;School of Geographic Information and tourism,Chuzhou University,Chuzhou 239000,China;School of Surveying and mapping and Land Information Engineering,Henan Polytechnic University,Jiaozuo 454003,China)
机构地区:[1]河海大学水文水资源学院,江苏南京211100 [2]滁州学院地理信息与旅游学院,安徽滁州239000 [3]河南理工大学测绘与国土信息工程学院,河南焦作454003
出 处:《遥感技术与应用》2021年第4期926-935,共10页Remote Sensing Technology and Application
基 金:国家自然科学基金项目(41871326、41271361)。
摘 要:草种精细识别对三江源区草地生态系统退化监测具有重要意义。基于无人机高光谱遥感系统,获取三江源草地退化典型区的高光谱影像。在对原始光谱特征利用XGBoost进行优化选择的基础上,结合扩展形态学属性剖面特征,利用稀疏多项式逻辑回归与自适应稀疏表示两种分类方法分别对影像上的不同可食与毒杂草种进行精细识别,在此基础上提出形状自适应的后处理方法对识别结果进行平滑处理。结果表明:①利用XGBoost方法选择出重要性高的光谱特征能提升高光谱数据的识别效果并节省运行时间;②利用空间—光谱特征的识别方法相较于仅利用光谱特征的方法可以有效改善草种识别效果,使总体精度提升4%~5%;③利用两种稀疏表示方法在小样本的情况下对草种精细识别的精度分别达到94.07%、93.15%,利用形状自适应后处理方法能有效提高多种毒杂草种的识别精度,使得总体精度分别提升约1.64%和1.12%。基于特征挖掘的稀疏表示分类方法能实现高精度的无人机高光谱影像草种精细识别,为更大范围的草原物种精细识别提供了技术支撑。Fine identification of grass species is of great significance for grassland ecosystem degradation moni⁃toring in the Three Rivers Source Region.Based on the UAV hyperspectral remote sensing system,the hyper⁃spectral image of the typical grassland degradation area of Three-River Source Region was obtained.Firstly,us⁃ing the obtained UAV hyperspectral image,the optimal bands combination were selected using XGBoost,the extended morphological attribute profile features were extracted and were combined with the selected spectral features.Secondly,sparse multinomial logistic regression and adaptive sparse representation methods were ad⁃opted to identify different grass species.Finally the shape adaptive based post-processing method was proposed to smooth the identification results.The results showed that:(1)Using the XGBoost method to select impor⁃tant spectral features can improve the identification result and save running time;(2)the spatial-spectral feature based method can effectively improve the identification result of grass species and the overall accuracy were im⁃proved by 4%~5%compared with the method of using only spectral features;(3)using two sparse representa⁃tion methods,the overall accuracy of fine identification of grass species in the case of limited samples was 94.07%and 93.15%respectively,and the identification accuracy of various poison weed species was improved effectively by using shape adaptive post-processing method,which improved the overall accuracy by about 1.64%and 1.12%,respectively.The feature mining based sparse representation classification methods can achieve high-precision grass species fine identification of UAV hyperspectral images,and provide technical sup⁃port for a wider range of grassland species fine identification.
关 键 词:无人机高光谱影像 草种精细识别 特征挖掘 形状自适应 稀疏表示 三江源
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.17.175