基于迁移学习的综合传动装置健康预测方法  被引量:2

Health Prediction Method of Comprehensive Transmission Based on Transfer Learning

在线阅读下载全文

作  者:肖宇 李英顺 戴喜生 刘胜永 Xiao Yu;Li Yingshun;Dai Xisheng;Liu Shengyong(School of Electrical&Information Engineering,Guangxi University of Science&Technology,Liuzhou 545000,China;School of Control Science&Engineering,Dalian University of Technology,Dalian 116024,China)

机构地区:[1]广西科技大学电气与信息工程学院,广西柳州545000 [2]大连理工大学控制科学与工程学院,辽宁大连116024

出  处:《兵工自动化》2021年第10期1-5,9,共6页Ordnance Industry Automation

基  金:国家自然科学基金项目(71801196);辽宁省兴辽英才计划(XLYC1903015)。

摘  要:针对某型步战车综合传动装置变工况的工作特点,提出一种基于迁移学习的健康预测方法。采用灰色关联分析(grey relational analysis,GRA)提取源域和目标域内时序退化特征作为各部件健康指标(health indicator,HI),构建1维时序健康指标,通过动态时间规整(dynamic time warping,DTW)运算得到目标域特征与健康指标的关联度,提取源域与目标域的公共退化信息,构建面向健康预测的支持向量回归(support vector regression,SVR)模型进行健康预测,并以传动装置的变速结构为例进行验证。结果表明:基于迁移学习的健康预测结果更贴合实际健康变化趋势,有助于维修人员更为准确地判断传动装置的健康状态。Aiming at the working characteristics of variable conditions of an integrated transmission device of certain type of infantry fighting vehicle(IFV)in fantry fiohting vehide,a health prediction method based on transfer learning is proposed.Use the grey relational analysis(GRA)to extract the time series degradation features in the source and target domains as health indicators(HI)of each component,construct a one-dimensional series of health indicators,through the dynamic time warping(DTW)operation,the correlation between the characteristics of the target domain and the health indicators is obtained,extract the public degradation information of the source and target domains,construct a support vector regression(SVR)model for health prediction for health prediction,and take the transmission structure of the transmission device as an example to verify.The results show that the health prediction results based on transfer learning are more in line with actual health trends,and help the maintenance staff more accurately judge the health status of the transmission device.

关 键 词:变工况 健康预测 迁移学习 灰色关联分析 

分 类 号:TJ81[兵器科学与技术—武器系统与运用工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象