基于多源地理数据精细尺度的武汉市人居环境新型冠状病毒肺炎疫情传播风险评估  被引量:5

Fine-scale risk assessment of COVID-19 in Wuhan based on multisource geographical data

在线阅读下载全文

作  者:姚尧 尹瀚玙 李歆艺 郭紫锦 任书良 王若宇 关庆锋[1] YAO Yao;YIN Hanyu;LI Xinyi;GUO Zijin;REN Shuliang;WANG Ruoyu;GUAN Qingfeng(School of Geography and Information Engineering,China University of Geosciences,Wuhan 430078,China;State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430072,China;Institute of Geography,School of GeoSciences,University of Edinburgh,Edinburgh,UK)

机构地区:[1]中国地质大学(武汉)地理与信息工程学院,武汉430078 [2]武汉大学测绘遥感信息工程国家重点实验室,武汉430072 [3]爱丁堡大学地球科学学院,英国

出  处:《生态学报》2021年第19期7493-7508,共16页Acta Ecologica Sinica

基  金:国家自然科学青年基金项目(41801306)。

摘  要:新型冠状病毒肺炎的迅速传播和扩散警示着疾病风险评估的重要性。但现有的风险评估方法受数据限制,缺少实时性和准确性。此外,多数研究以行政统计单元作为分析尺度,存在可变面元问题。为解决这些问题,耦合精细尺度下武汉市疫情数据及多源地理数据,基于随机森林算法构建社区尺度的市域疫情传播风险评估模型并进行了疫情风险制图。模型测试精度达到0.85,Kappa系数达到0.70。此外,本研究还建立基于随机森林算法的社区及场所尺度的“空间变量-感染风险”模型,评估了不同场所设施疫情传播的风险程度。研究表明,(1)武汉中心区域感染风险最高并呈现出向外围递减的趋势;(2)感染风险排名前五的一级场所类型分别为购物服务、医疗服务、金融服务、交通设施以及公共设施;(3)小学、中学的疫情传播风险较低,而高等院校传播风险较高;(4)社区尺度下的疫情风险程度,预测购物场所与交通场所是疫情传播风险最高的驱动因子。本研究基于精细尺度提出风险评估新方法,可为未来疾病风险评估提供新思路,为疫情防控提供决策支持,人民群众提供安全保障。The severe outbreak of coronavirus disease 2019(COVID-19)demonstrates the importance of disease risk assessment.The existing risk assessment methods are limited by the real time and accuracy of data.Most of them take the administrative statistical unit as the analysis scale,which has modifiable areal unit problem(MAUP).First,based on a random forest method,we integrated COVID-19 transmission data at community scale and multisource geospatial data to map COVID-19 disease outbreak risks at fine scale.The experimental results(overall accuracy=0.85,Kappa=0.70)indicated the feasibility of the model.Second,we built a spatial variable-infection risk model at community and place scale to assess the risk degree of epidemic spread in different places and facilities.Last,we analyzed the possibly spatial drivers of disease transmission.The results show that(1)the central area of Wuhan city has the highest risk of infection and the risk map presents a trend of decreasing from the center to the periphery;(2)The top five facilities with the highest risk of COVID-19 infection are shopping,medical,financial,transportation and public facilities;(3)The transmission risk of the epidemic is low in primary and middle schools,but high in colleges and universities;(4)The model determines the degree of epidemic risk at the community scale and predicts that shopping and traffic places are two most significant driving factors with the epidemic outbreak.In conclusion,this study suggests a new method of disease risk assessment based on a fine scale,which can pave the way for future disease risk assessment.

关 键 词:风险评估 精细尺度 多源地理数据 新型冠状病毒肺炎 驱动因子 

分 类 号:R563.1[医药卫生—呼吸系统] R181.8[医药卫生—内科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象