检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒋卫祥[1] 李功 Jiang Weixiang;Li Gong(School of Software and Big Data,Changzhou College of Information Technology,Changzhou 213164,China;School of Computer and Software,Nanjing University of Information Science&Technology,Nanjing 210044,China)
机构地区:[1]常州信息职业技术学院软件与大数据学院,常州213164 [2]南京信息工程大学计算机与软件学院,南京210044
出 处:《电子测量与仪器学报》2021年第7期60-65,共6页Journal of Electronic Measurement and Instrumentation
基 金:江苏省高等学校自然科学研究面上项目(19KJB520023);常州信息职业技术学院智能制造边缘计算开放实验室项目(KYPT201802Z)资助。
摘 要:视频异常事件检测一直是一个具有挑战性的问题,现有的方法往往把视频特征提取和异常检测模型建立两个步骤独立设计,导致方法无法达到最优。针对该问题,设计了一种一类神经网络方法用于视频异常检测。该方法结合了自编码器的逐层数据表示形式能力以及一类分类能力,隐藏层的特征是针对异常检测的特定任务而构建的,从而获得了一个超平面以将所有正常样本与异常样本分开。实验结果表明,提出的方法在PED子集和PED2子集上分别达到了94.9%的帧级AUC和94.5%的帧级AUC,在Subway数据集上实现了80个正确事件检测,证实了该方法在工业和城市环境中的广泛适用性。Due to the vague definition of abnormal events and the scarcity of its own samples, the detection of video abnormal events has always been a challenging problem. Existing methods often separate the two steps of video feature extraction and anomaly detection model establishment, it leads to the method that cannot reach the optimum. This paper follows the idea of distance-based anomaly detection, and proposes a one-class neural network method for video anomaly detection. This method combines the layer-by-layer data representation ability of the autoencoder and the one-class classification ability. The features of the hidden layer are constructed for the specific task of anomaly detection, thereby obtaining a hyperplane to separate all normal samples from abnormal samples. The experimental results on two benchmark data sets show that the proposed method achieves 94.9% frame-level AUC and 94.5% frame-level AUC on the PED subset and PED2 subset, respectively, and achieves 80 correct event detections on the Subway dataset, confirming the wide applicability of the method in industrial and urban environments.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200