Distributed H_(∞)filtering of nonlinear systems with random topology by an event-triggered protocol  被引量:1

在线阅读下载全文

作  者:Yun CHEN Mengze ZHU Renquan LU Anke XUE 

机构地区:[1]Key Lab for IoT and Information Fusion Technology of Zhejiang,Hangzhou Dianzi University,Hangzhou 310018,China [2]School of Automation,Guangdong University of Technology,Guangzhou 510006,China

出  处:《Science China(Information Sciences)》2021年第10期202-216,共15页中国科学(信息科学)(英文版)

基  金:supported partially by Zhejiang Provincial Natural Science Foundation(Grant No.LR16F0-30003);partially by National Natural Science Foundation of China(Grant Nos.61973102,U1509205)。

摘  要:Applying an event-triggered protocol,this paper proposes a distributed H_(∞)filter design for nonlinear perturbed systems under fading measurements with random topology.Nonlinearities in this system obey the one-sided Lipschitz constraint,which embraces the conventional Lipschitz condition as a special case.The sensor network allows random variations of the interconnection strengths between adjacent nodes,and the connection coefficient is determined as the product of a constant and a stochastic variable with a known probabilistic feature.To reduce the unnecessary data transmission and efficiently use the limited bandwidth,the transmissions are orchestrated by an event-triggered regulating strategy.A stochastic bounded real lemma is established for the resulting error dynamics.Based on the presented matrix decomposition,which removes the direct coupling between the statistical information of interconnection strengths and the filter gain,the distributed H_(∞)filter gain can be explicitly expressed and easily solved.The usefulness of the theoretical method is demonstrated in a simulation study.

关 键 词:sensor network distributed H_(∞)filtering one-sided Lipschitz condition event-triggered protocol random topology 

分 类 号:TN713[电子电信—电路与系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象