DSCE-GEP算法在PM2.5浓度预测中的应用  被引量:2

Applicationof Double System Co-evolutionary Gene Expression Programming in PM2.5 Concentration Prediction

在线阅读下载全文

作  者:王超学[1] 贾晓莉 孙嘉诚 WANG Chaoxue;JIA Xiaoli;SUN Jiacheng(College of Information and Control Engineering,Xi'an University of Architecture and Technology,Xi'an 710055,China)

机构地区:[1]西安建筑科技大学信息与控制工程学院,西安710055

出  处:《计算机测量与控制》2021年第10期71-76,共6页Computer Measurement &Control

基  金:国家自然科学基金项目(62072363);陕西省自然科学基础研究计划(S2019-JC-YB-1191)。

摘  要:雾霾防治是目前空气质量保护问题研究的热点,PM2.5浓度预测是雾霾防治的关键之一;文章采用一种双系统协同进化的基因表达式编程算法(DSCE-GEP)进行PM2.5浓度预测,该算法在GEP算法中引入人工干预操作来提高算法进化速度以及解的质量;DSCE-GEP算法是对人类进化的模拟,不仅具有强大的模型学习能力,而且能得到模型的显式函数表达式;文中以西安地区逐日PM2.5浓度预测为例,将DSCE-GEP算法与传统基因表达式编程算法(GEP)、文献中分类回归树和极限学习机组合模型(CART-EELM)以及卷积神经网络和长短期记忆神经网络组合模型(CNN-LSTM)进行了对比实验;实验结果表明,DSCE-GEP算法拟合度更高,是一种具有竞争力的智能预测算法。Haze prevention and control is a hot topic of air quality protection research at present,and PM2.5 concentration prediction is one of the keys to haze prevention and control.In this paper,a dual system co-evolution gene expression programming algorithm(DSCE-GEP)was used to predict PM2.5 concentration.In this algorithm,manual intervention was introduced into the GEP algorithm to improve the algorithm evolution speed and the quality of the solution.DSCE-GEP algorithm is a simulation of human evolution.It not only has strong ability of model learning,but also can get explicit function expression of the model.In this paper,the daily PM2.5 concentration prediction in Xi'an area is taken as an example,and the DSCE-GEP algorithm is compared with the traditional gene expression programming algorithm(GEP),the classification regression tree and extreme learning machine combination model(CART-EELM)in literature,and the convolutional neural network and long and short-term memory neural network combination model(CNN-LSTM).The experimental results show that the DSCE-GEP algorithm has higher fitting degree and is a competitive intelligent prediction algorithm.

关 键 词:PM2.5浓度预测 协同进化 基因表达式编程 显式表达式 西安地区 

分 类 号:TP399[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象