检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:YU Xin WU Lingzhen XIE Mian WANG Yanlin XU Liuming LU Huixia XU Chenhua
机构地区:[1]Department of Computer and Electronic Information,Guangxi University,Nanning 530004,China [2]School of Computer Science and Engineering,Guilin University of Aerospace Technology,Guilin 541004,China [3]The Guangxi Key Laboratory of Multimedia Communications and Network Technology,Nanning 530004,China [4]Department of Electrical Engineering,Guangxi University,Nanning 530004,China
出 处:《Chinese Journal of Electronics》2021年第4期634-643,共10页电子学报(英文版)
基 金:supported by the the Natural Science Foundation of China(No.61862004)。
摘 要:This paper presents a smoothing neural network to solve a class of non-Lipschitz optimization problem with linear inequality constraints.The proposed neural network is modelled with a differential inclusion equation,which introduces the smoothing approximate techniques.Under certain conditions,we prove that the trajectory of neural network reaches the feasible region in finite time and stays there thereafter,and that any accumulation point of the solution is a stationary point of the original optimization problem.Furthermore,if all stationary points of the optimization problem are isolated,then the trajectory converges to a stationary point of the optimization problem.Two typical numerical examples are given to verify the effectiveness of the proposed neural network.
关 键 词:Non-Lipschitz optimization Neural networks Stationary points CONVERGENCE
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.106.232