Essential Protein Prediction Based on Shuffled Frog-Leaping Algorithm  被引量:2

在线阅读下载全文

作  者:YANG Xiaoqin LEI Xiujuan ZHAO Jie 

机构地区:[1]School of Computer Science,Shaanxi Normal University,Xi’an 710062,China

出  处:《Chinese Journal of Electronics》2021年第4期704-711,共8页电子学报(英文版)

基  金:supported by the National Natural Science Foundation of China(No.61972451,No.61672334,No.61902230);the Fundamental Research Funds for the Central Universities,Shaanxi Normal University(GK201901010)。

摘  要:Essential proteins are integral parts of living organisms.The prediction of essential proteins facilitates to discover disease genes and drug targets.The prediction precision and robustness of most of existing identification methods are not satisfactory.In this paper,we propose a novel essential proteins prediction method(EPSFLA),which applies Shuffled frog-leaping algorithm(SFLA),and integrates several biological information with network topological structure to identify essential proteins.Specifically,the topological property and several biological properties(function annotation,subcellular localization,protein complex,and orthology)are integrated and utilized to weight protein-protein interaction networks.Then the position of a frog is encoded and denotes a candidate essential protein set.The frog population continuously evolve by means of local exploration and global exploration until termination criteria for algorithm are satisfied.Finally,those proteins contained in the best frog are regarded as predicted essential proteins.The experimental results show that EPSFLA outperforms some well-known prediction methods in terms of various criteria.The proposed method aims to provide a new perspective for essential protein prediction.

关 键 词:Computational biology Essential protein Protein-protein interaction(PPI)network Shuffled frog leap algorithm 

分 类 号:Q811.4[生物学—生物工程] TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象