检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:ZHANG Shufang WANG Qinyu ZHU Tong LIU Yuhong
机构地区:[1]School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China [2]Department of Computer Science and Engineering,Santa Clara University,Santa Clara 95053,USA
出 处:《Chinese Journal of Electronics》2021年第4期719-726,共8页电子学报(英文版)
摘 要:Research on the traffic sign detection is significant for driverless technology,which provides useful navigation information.Existing object detection methods are only applicable to large-size objects or small-scale specific types of traffic signs,and the performance of detecting traffic signs in street views is not adequate.In this regard,we propose a method to detect and classify small traffic signs by constructing a cascaded network.Specifically,the RetinaNet network is adopted firstly to integrate multi-layer information to identify small traffic signs in traffic scene images.The focal loss function is used to balance the biased distribution of traffic sign categories.Then,a two-class network is cascaded after the RetinaNet,which helps identify valid traffic signs from the first-stage prediction results.Experiments show that our cascaded network structure could achieve the balance of different categories of predictions and an improvement in precision and recall.
关 键 词:Feature extraction Image classification Object detection Transportation industry
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] U463.6[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.147.211