检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨燕燕 张晓 李翔宇 杜晨曦 李懿恒 YANG Yanyan;ZHANG Xiao;LI Xiangyu;DU Chenxi;LI Yiheng(School of Software Engineering,Beijing Jiaotong University,Beijing 100044,P.R.China;School of Science,Xi’an University of Technology,Xi’an 710048,P.R.China)
机构地区:[1]北京交通大学软件学院,北京100044 [2]西安理工大学理学院,西安710048
出 处:《重庆邮电大学学报(自然科学版)》2021年第5期759-768,共10页Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基 金:中央高校基本科研业务费专项资金(2019RC055)。
摘 要:为了提高模糊粗糙集特征选择算法的计算效率,在每次迭代过程中通过不断缩减样本和特征的搜索范围,提出了一种新的模糊粗糙集特征选择算法。为了减少样本的搜索范围,利用样本对决策类下近似隶属度的单调性,构建样本的筛选机制,用以筛除当前所选特征子集已保持决策类下近似隶属度的样本;为了缩减特征的搜索范围,采用特征冗余性概念,构建特征搜索机制,用以移除已被确定为冗余的特征;通过融合样本筛选机制和特征搜索准则,设计模糊粗糙集特征选择的高效算法。数值实验表明,所提算法具有高效性和有效性。In order to improve the time efficiency of fuzzy rough set-based feature selection methods,a novel fuzzy rough set-based feature selection algorithm is developed by step-by-step shrinking the search scope of both samples and features at each iteration of locating a best feature.For the reduction of the sample search range,the sample filtering mechanism is first constructed by the monotonicity of the membership degree of a sample belonging to the lower approximation of its decision class.During the iteration of selecting a best feature,the sample filtering mechanism can ignore samples,of which the degree belonging to lower approximations of their decision classes is preserved by a current selected feature subset.These earlier samples will not be considered during the later iteration of selecting other best features.For the reduction of the feature search scope,the feature search scheme is then designed to determine redundant features based on the feature redundancy.These earlier redundant features are not considered during the later process of feature selection.Furthermore,the algorithm is proposed by combining the sample filtering mechanism and the feature search scheme.Numerical experiments finally demonstrate the effectiveness and efficiency of the proposed algorithm.
关 键 词:模糊粗糙集 特征选择 特征冗余性 样本筛选机制 特征搜索准则
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166