检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:燕乔[1] 高名杨 梁明浩 王硕 YAN Qiao;GAO Ming-yang;LIANG Ming-hao;WANG Shuo(College of Hydraulic&Environmental Engineering,China Three Gorges University,Yichang 443002,China)
机构地区:[1]三峡大学水利与环境学院,湖北宜昌443002
出 处:《水电能源科学》2021年第10期110-113,共4页Water Resources and Power
基 金:国家重点研发计划(2018YFC1508801-4)。
摘 要:针对极限学习机(ELM)沉降预测模型中随机权值和阈值导致部分节点无效的问题,引入改进粒子群算法(IPSO)优化极限学习机的参数,构建基于改进粒子群-极限学习机算法的面板堆石坝运行期沉降预测模型,并将其应用于某完建的面板堆石坝运行期沉降预测中。结果表明,与未优化的极限学习机预测模型和统计回归预测模型的拟合预测结果相比,经改进粒子群算法优化后的极限学习机预测模型在测点上的拟合精度更高,且由于引入改进粒子群算法后,极限学习机在满足精度条件下所需预设的隐含层神经元数更少,这可极大地降低模型网络的复杂度,避免模型在训练中出现过拟合现象;三个模型中IPSO-ELM模型的泛化能力更好,预测结果更精确、稳定。Aiming at the problem that some nodes are invalid due to random weights and thre sholds in thesettlement prediction model of extreme learning machine(ELM),an improved particle swarm optimization(PSO)algorithm is introduced to optimize the parameters of the extreme learning machine(ELM),and a settlement prediction model of CFRD in operation period is established based on the improved PSO-ELM algorithm.And the model is applied to the settlement prediction of a completed CFRD during the operation period.Compared with the extreme learning machine prediction model and statistical regression prediction model,the prediction model optimized by the improved PSO has higher fitting accuracy.Due to the introduction of the improved PSO,the number of pre-set hidden layer neurons of the extreme learning machine is less,which greatly reduces the complexity of the model network and avoids the phenomenon of over fitting in the training of the model.The IPSO-ELM model has the best generalization capability and more stable prediction results.
关 键 词:面板堆石坝 改进粒子群-极限学习机(IPSO-ELM) 运行期 沉降预测模型
分 类 号:TV641.1[水利工程—水利水电工程] TV698.1
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.158