Mechanism analysis and simulation of methyl methacrylate production coupled chemical looping gasification system  被引量:1

在线阅读下载全文

作  者:Wende Tian Haoran Zhang Zhe Cui Xiude Hu 

机构地区:[1]College of Chemical Engineering,Qingdao University of Science&Technology,Qingdao 266042,China [2]State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering,Ningxia University,Yinchuan 750000,China

出  处:《Chinese Journal of Chemical Engineering》2021年第9期184-196,共13页中国化学工程学报(英文版)

基  金:supported by the National Natural Science Foundation of China(21576143);Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(2020-KF-13)。

摘  要:Nowadays,the efficient and cleaner utilization of coal have attracted wide attention due to the rich coal and rare oil/gas resources structure in China.Coal chemical looping gasification(CCLG)is a promising coal utilization technology to achieve energy conservation and emission reduction targets for highly pure synthesis gas.As a downstream product of synthesis gas,methyl methacrylate(MMA),is widely used as raw material for synthesizing polymethyl methacrylate and resin products with excellent properties.So this paper proposes a novel system integrating MMA production and CCLG(CCLG-MMA)processes aiming at"energy saving and low emission",in which the synthesis gas produced by CCLG and purified by dry methane reforming(DMR)reaction and Rectisol process reacts with ethylene for synthesizing MMA.Firstly,the reaction mechanism of CCLG is investigated by using Reactive force field(ReaxFF)MD simulation based on atomic models of char and oxygen carrier(Fe_(2)O_(3))for obtaining optimum reaction temperature of fuel reactor(FR).Secondly,the steady-state simulation of CCLG-MMA system is carried out to verify the feasibility of MMA production.The amount of CO_(2)emitted by CCLG process and DMR reaction is 0.0028(kg CO_(2))^(-1)·(kg MMA)^(-1).The total energy consumption of the CCLG-MMA system is 45521 kJ·(kg MMA)^(-1),among which the consumption of MMA production part is 25293 k(·kg MMA)^(-1).The results show that the CCLG-MMA system meets CO_(2)emission standard and has lower energy consumption compared to conventional MMA production process.Finally,one control scheme is designed to verify the stability of CCLG-MMA system.The CCLG-MMA integration strategy aims to obtain highly pure MMA from multi-scale simulation perspectives,so this is an optimal design regarding all factors influencing cleaner MMA production.

关 键 词:ReaxFF MD simulation CCLG-MMA system simulation Sensitivity analysis Plant wide control 

分 类 号:TQ225.24[化学工程—有机化工]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象