螺芳基钙钛矿太阳能电池空穴传输材料研究进展  被引量:7

Research Progress of Hole Transport Materials Based on Spiro Aromatic-Skeleton in Perovskite Solar Cells

在线阅读下载全文

作  者:刘庆琳 任保轶[1] 孙亚光[1] 解令海[2] 黄维[2] Qing-Lin Liu;Bao-Yi Ren;Ya-Guang Sun;Ling-Hai Xie;Wei Huang(Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province,College of Science,Shenyang University of Chemical Technology,Shenyang 110142,China;State Key Laboratory of Organic Electronics and Information Displays,Nanjing University of Posts&Telecommunications,Nanjing 210023,China)

机构地区:[1]沈阳化工大学理学院辽宁省无机分子基化学重点实验室,沈阳110142 [2]南京邮电大学省部共建有机电子与信息显示国家重点实验室,南京210023

出  处:《化学学报》2021年第10期1181-1196,共16页Acta Chimica Sinica

基  金:沈阳化工大学科学研究计划(XXLJ2019006);营口市软科学研究计划(2020JH2/0100017);江苏省有机电子与信息显示重点实验室—省部共建国家重点实验室培育基地开放研究基金资助。

摘  要:近10年,第三代光电能源转换技术钙钛矿太阳能电池(PSCs)正迅速崛起.基于有机-无机杂化钙钛矿材料的本征半导体特性以及PSCs平面多层器件架构特点,采用有机小分子空穴传输材料(HTMs)作为PSCs的p-型层,不仅实现了PSCs器件的全固态化,且大幅提升了器件效率及稳定性.以当前通用的标准空穴传输材料spiro-OMeTAD(2,2′,7,7′-四[N,N-二(4-甲氧基苯基)氨基]-9,9′-螺二芴)为模板,研究人员开展了众多结构剖析和改进工作.分子spiro-OMeTAD中,三维螺二芴(SBF)核能以较小的空间集成更多的空穴传输单元;而芳胺优异的p-型特性,使其成为高效的电活性单元.经典螺芳核SBF制备成本高,可修饰位置单一;因此,基于spiro-OMeTAD的结构改进主要围绕芳胺单元的修饰开展.随着HTMs分子设计以及合成方法学的进展,近5年来,一系列低成本、高性能的类SBF螺芳基单元逐渐兴起,并迅速进入空穴传输材料领域,如:螺[芴-9,9′-氧杂蒽]、螺吖啶、螺硫杂蒽等.螺芳基核结构的日益丰富,大大拓展了HTMs分子的设计空间,从而推动了PSCs效率和稳定性的不断提升.因此,本综述聚焦含螺芳烃骨架的HTMs分子,根据其器件性能表现,分析高性能材料的结构要素.按照螺芳烃核结构对高性能HTMs进行分类归纳,总结了结构设计思路和构效关系.期望通过较为全面的评述,为HTMs分子构建提供可参考的策略,从而推动PSCs继续向高效率、长寿命的实用化方向发展.The third-generation energy electro-optical technology,perovskite solar cells(PSCs),have risen fast over the past decade.In view of the characteristic of intrinsic-semiconductor of organic-inorganic hybrid perovskite materials,as well as the multilayer planar architecture of PSC devices,the hole transport materials(HTMs)based on organic small molecules were introduced PSCs to make up of p-type layer,by which not only full-solid state PSCs were established,but also the highly efficient and stable PSC devices were attained.Currently,spiro-OMe TAD(2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene)is still used as an universal benchmark material in the hole-transporting layer of PSCs,meanwhile the researches have make great effort to analyze and to improve the spiro-OMe TAD.For the prevailing molecule,the three-dimensional core of spirofluorene(SBF)offers a platform to integrate more hole-transporting units with less occupied space,and arylamine groups act as high electroactivity units due to their excellent p-type property.However,the classical SBF core has two major drawbacks:expensive preparation cost and monotonous modification positions,therefore the improvement orientation of spiro-OMe TAD is focused on the arylamine moieties.Along with the developments of molecular design of HTMs and corresponding synthetic methodology,a series of SBF-like aromatic-skeletons have been springing up and stepping into the field of HTMs in recent five years,e.g.spiro[fluorene-9,9′-xanthene],spiroacridine,spirothioxanthene and so on.These advancements expand the design space of HTM molecules,and enhance the efficiency and stability of PSCs.In consequence,we put eyes on the HTMs containing spiro aromatic-skeleton,and seek the structure elements of highly efficient materials.In this review,the high performance HTMs have been classified and summarized according to the type of spiro structure,further,their design solution and structure-performance relationship have also been refined.It is expected that the s

关 键 词:钙钛矿太阳能电池 空穴传输材料 螺环芳烃 构效关系 

分 类 号:TM914.4[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象