检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈大卫 付安民[1,2] 周纯毅 陈珍珠 Chen Dawei;Fu Anmin;Zhou Chunyi;Chen Zhenzhu(School of Computer Science and Engineering,Nanjing University of Science&Technology,Nanjing 210094;State Key Laboratory of Information Security(Institute of Information Engineering,Chinese Academy of Sciences),Beijing 100093)
机构地区:[1]南京理工大学计算机科学与工程学院,南京210094 [2]信息安全国家重点实验室(中国科学院信息工程研究所),北京100093
出 处:《计算机研究与发展》2021年第11期2364-2373,共10页Journal of Computer Research and Development
基 金:国家自然科学基金项目(62072239);信息安全国家重点实验室开放基金项目(2021-MS-07);中央高校基本科研业务费专项资金(30920021129,30921013111)。
摘 要:联邦学习使用户在数据不出本地的情形下参与协作式的模型训练,降低了用户数据隐私泄露风险,广泛地应用于智慧金融、智慧医疗等领域.但联邦学习对后门攻击表现出固有的脆弱性,攻击者通过上传模型参数植入后门,一旦全局模型识别带有触发器的输入时,会按照攻击者指定的标签进行误分类.因此针对联邦学习提出了一种新型后门攻击方案Bac_GAN,通过结合生成式对抗网络技术将触发器以水印的形式植入干净样本,降低了触发器特征与干净样本特征之间的差异,提升了触发器的隐蔽性,并通过缩放后门模型,避免了参数聚合过程中后门贡献被抵消的问题,使得后门模型在短时间内达到收敛,从而显著提升了后门攻击成功率.此外,论文对触发器生成、水印系数、缩放系数等后门攻击核心要素进行了实验测试,给出了影响后门攻击性能的最佳参数,并在MNIST,CIFAR-10等数据集上验证了Bac_GAN方案的攻击有效性.Federated learning enables users to participate in collaborative model training while keeping their data in local,which ensures the privacy and security of users data.It has been widely used in smart finance,smart medical and other fields.However,federated learning shows inherent vulnerability to backdoor attacks,where the attacker implants the backdoor by uploading the model parameters.Once the global model recognizes the input with the trigger,it will misclassify the input as the label specified by the attacker.This paper proposes a new federated learning backdoor attack scheme,Bac_GAN.By combining generative adversarial network,triggers are implanted in clean samples in the form of watermarks,which reduces the discrepancy between trigger features and clean sample features,and enhance the imperceptibility of triggers.By scaling the backdoor model,the problem of offsetting the contribution of the backdoor during parameter aggregation is avoided,so that the backdoor model can converge in a short time,thus significantly increasing the attack success rate.In addition,we conduct experimental tests on the core elements of backdoor attacks,such as trigger generation,watermark coefficient and scaling coefficient,and give the best parameters that affect the performance of backdoor attack.Also,we validate the attack effectiveness of the Bac_GAN scheme on MNIST and CIFAR-10.
关 键 词:联邦学习 生成式对抗网络 后门攻击 触发器 水印
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15