检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:X.C.Li J.X.Zhao J.H.Cong R.D.K.Misra X.M.Wang X.L.Wang C.J.Shang
机构地区:[1]Collaborative Innovation Center of Steel Technology,University of Science and Technology Beijing,Beijing 100083,China [2]Department of Metallurgical,Materials and Biomedical Engineering,University of Texas at El Paso,500 W.University Avenue,El Paso,TX 79968,USA
出 处:《Journal of Materials Science & Technology》2021年第25期49-58,共10页材料科学技术(英文版)
基 金:financially supported by the National Key Research and Development Program of China(No.2017YFB0304900)。
摘 要:Gradient boosting decision tree(GBDT)machine learning(ML)method was adopted for the first time to automatically recognize and conduct quantitative statistical analysis of boundaries in bainitic microstructure using electron back-scatter diffraction(EBSD)data.In spite of lack of large sets of EBSD data,we were successful in achieving the desired accuracy and accomplishing the objective of recognizing the boundaries.Compared with a low model accuracy of<50%as using Euler angles or axis-angle pair as characteristic features,the accuracy of the model was significantly enhanced to about 88%when the Euler angle was converted to overall misorientation angle(OMA)and specific misorientation angle(SMA)and considered as important features.In this model,the recall score of prior austenite grain(PAG)boundary was~93%,high angle packet boundary(OMA>40°)was~97%,and block boundary was~96%.The derived outcomes of ML were used to obtain insights into the ductile-to-brittle transition(DBTT)behavior.Interestingly,ML modeling approach suggested that DBTT was not determined by the density of high angle grain boundaries,but significantly influenced by the density of PAG and packet boundaries.The study underscores that ML has a great potential in detailed recognition of complex multi-hierarchical microstructure such as bainite and martensite and relates to material performance.
关 键 词:Machine learning Feature engineering Automatic recognition Lath structure CRYSTALLOGRAPHY
分 类 号:TG142.2[一般工业技术—材料科学与工程] TP181[金属学及工艺—金属材料]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.14.133