检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许艳雷 邱明[1,2] 李军星 刘璐 牛凯岑 XU Yanlei;QIU Ming;LI Junxing;LIU Lu;NIU Kaicen(School of Mechatronics Engineering,Henan University of Science and Technology,Luoyang 471003,China;Henan Provincial Engineering Technology Research Center for Advanced Manufacturing of High-end Bearings and Intelligent Equipment,Henan University of Science and Technology,Luoyang 471003,China)
机构地区:[1]河南科技大学机械工程学院,河南洛阳471003 [2]河南科技大学高端轴承先进制造与智能装备河南省工程技术研究中心,河南洛阳471003
出 处:《振动与冲击》2021年第19期26-31,40,共7页Journal of Vibration and Shock
基 金:国家重点研究计划(2018YFB2000203)。
摘 要:准确预测滚动轴承的剩余使用寿命(remaining useful life,RUL)对机械设备安全可靠运行有着至关重要的作用,针对滚动轴承寿命预测中存在的未能准确区分滚动轴承退化阶段与如何有效地利用历史退化数据与实时监测数据等问题,提出了一种SKF(switching Kalman filters)、KF(Kalman filters)和Bayes结合的滚动轴承性能退化建模与剩余使用寿命预测方法。结合滚动轴承振动信号性能监测数据,采用SKF方法识别出轴承性能退化的变点;利用随机效应指数退化模型描述轴承性能退化过程,结合同类轴承性能数据给出模型未知参数极大似然估计;利用KF单步预测对当前时刻监测数据进行修正,基于Bayes方法对模型中的随机参数进行实时更新,推导出轴承剩余使用寿命分布模型,计算滚动轴承剩余使用寿命;通过对滚动轴承试验数据分析,验证了该方法的适用性和有效性。Accurate prediction for residual life of rolling bearing plays an important role in safe and reliable operation of mechanical equipment.Here,aiming at problems in life prediction of rolling bearing,such as,not being able to accurately distinguish degradation stage of rolling bearing and how to effectively use historical degradation data and real-time monitoring data,a method for rolling bearing performance degradation modeling and remaining useful life(RUL)prediction based on combination of switching Kalman filters(SKF)recognition,Kalman filters(KF)single step prediction and Bayes update was proposed.Firstly,combined with performance monitoring data of rolling bearing vibration signals,SKF method was used to identify the change point of bearing performance degradation.Secondly,the random effect exponential degradation model was used to describe the process of bearing performance degradation,and the maximum likelihood estimation of the model’s unknown parameters was given based on the performance data of the same kind bearings.Then,KF single-step prediction was used to modify the monitoring data at the present moment,and random parameters in the model were updated in real time based on Bayes method to derive the bearing residual life distribution model,and calculate the residual life of rolling bearing.Finally,the applicability and effectiveness of the proposed method were verified through analyzing test data of rolling bearing.
关 键 词:滚动轴承 剩余使用寿命(RUL)预测 SKF识别 KF单步预测 Bayes更新
分 类 号:TH133[机械工程—机械制造及自动化] TH17
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7