检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ren-sen MA Ai-mei YU Ke-ke WANG Hong-Jian LAI
机构地区:[1]Department of Mathematics,Beijing Jiaotong University,Beijing,100044,China [2]Department of Mathematics,Embry-Riddle Aeronautical University,Prescott,AZ,USA [3]Department of Mathematics,West Virginia University,Morgantown,WV,USA
出 处:《Acta Mathematicae Applicatae Sinica》2021年第4期800-806,共7页应用数学学报(英文版)
基 金:This paper is supported by the National Natural Science Foundation of China(Nos.11771039,11971054);Fundamental Research Funds for the Central Universities of China(No.2015JBM107);the 111 Project of China(No.B16002)。
摘 要:Let G be a multigraph.Suppose that e=u1v1 and e′=u2v2 are two edges of G.If e≠e′,then G(e,e′)is the graph obtained from G by replacing e=u1v1 with a path u1vev1 and by replacing e′=u2v2 with a path u2ve′v2,where ve,ve′are two new vertices not in V(G).If e=e′,then G(e,e′),also denoted by G(e),is obtained from G by replacing e=u1v1 with a path u1vev1.A graph G is strongly spanning trailable if for any e,e′∈E(G),G(e,e′)has a spanning(ve,ve′)-trail.The design of n processor network with given number of connections from each processor and with a desirable strength of the network can be modelled as a degree sequence realization problem with certain desirable graphical properties.A sequence d=(d1,d2,⋯,dn)is multigraphic if there is a multigraph G with degree sequence d,and such a graph G is called a realization of d.A multigraphic degree sequence d is strongly spanning trailable if d has a realization G which is a strongly spanning trailable graph,and d is line-hamiltonian-connected if d has a realization G such that the line graph of G is hamiltonian-connected.In this paper,we prove that a nonincreasing multigraphic sequence d=(d1,d2)⋯,dn)is strongly spanning trailable if and only if either n=1 and d1=0 or n≥2 and dn≥3.Applying this result,we prove that for a nonincreasing multigraphic sequence d=(d1,d2,⋯,dn),if n≥2 and dn≥3,then d is line-hamiltonian-connected.
关 键 词:strongly spanning trailable graphs multigraphic degree sequence hamiltonian-connected graphs line graph
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28