Investigation of new solutions for an extended(2+1)-dimensional Calogero-Bogoyavlenskii-Schif equation  被引量:3

在线阅读下载全文

作  者:Mohamed R.ALI R.SADAT Wen-Xiu MA 

机构地区:[1]Department of Mathematics,Faculty of Engineering,Benha University,Egypt [2]Department of Mathematics,Zagazig Faculty of Engineering,Zagazig University,Zagazig,Egypt [3]Department of Mathematics,Zhejiang Normal University,Jinhua 321004,China [4]Department of Mathematics,King Abdulaziz University,Jeddah 21589,Saudi Arabia [5]Department of Mathematics and Statistics,University of South Florida,Tampa,FL33620-5700,USA [6]School of Mathematics,South China University of Technology,Guangzhou 510640,China [7]School of Mathematical and Statistical Sciences,North-West University,Mafikeng Camus,Private Bag X2046,Mmabatho 2735,South Africa

出  处:《Frontiers of Mathematics in China》2021年第4期925-936,共12页中国高等学校学术文摘·数学(英文)

摘  要:We investigate and concentrate on new infinitesimal generators of Lie symmetries for an extended(2+1)-dimensional Calogero-Bogoyavlenskii-Schif(eCBS)equation using the commutator table which results in a system of nonlinear ordinary differential equations(ODEs)which can be manually solved.Through two stages of Lie symmetry reductions,the eCBS equation is reduced to non-solvable nonlinear ODEs using different combinations of optimal Lie vectors.Using the integration method and the Riccati and Bernoulli equation methods,we investigate new analytical solutions to those ODEs.Back substituting to the original variables generates new solutions to the eCBS equation.These results are simulated through three-and two-dimensional plots.

关 键 词:Extended Calogero-Bogoyavlenskii-Schif(eCBS)equation Riccati-Bernoulli equation symmetry analysis integrating factor nonlinear integrable equations 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象