检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林泓[1] 任硕 杨益 张杨忆 LIN Hong;REN Shuo;YANG Yi;ZHANG Yang-Yi(College of Computer Science and Technology,Wuhan University of Technology,Wuhan 430063)
机构地区:[1]武汉理工大学计算机科学与技术学院,武汉430063
出 处:《自动化学报》2021年第9期2226-2237,共12页Acta Automatica Sinica
摘 要:无监督图像翻译使用非配对训练数据能够完成图像中对象变换、季节转移、卫星与路网图相互转换等多种图像翻译任务.针对基于生成对抗网络(Generative adversarial network,GAN)的无监督图像翻译中训练过程不稳定、无关域改变较大而导致翻译图像细节模糊、真实性低的问题,本文基于对偶学习提出一种融合自注意力机制和相对鉴别的无监督图像翻译方法.首先,生成器引入自注意力机制加强图像生成过程中像素间远近距离的关联关系,在低、高卷积层间增加跳跃连接,降低无关图像域特征信息损失.其次,判别器使用谱规范化防止因鉴别能力突变造成的梯度消失,增强训练过程中整体模型的稳定性.最后,在损失函数中基于循环重构增加自我重构一致性约束条件,专注目标域的转变,设计相对鉴别对抗损失指导生成器和判别器之间的零和博弈,完成无监督的图像翻译.在Horse&Zebra、Summer&Winter以及AerialPhoto&Map数据集上的实验结果表明:相较于现有GAN的图像翻译方法,本文能够建立更真实的图像域映射关系,提高了生成图像的翻译质量.Unsupervised image-to-image translation using unpaired training data can accomplish a variety of image translation tasks such as object transformation,seasonal transfer,and satellite and map transformation.The image-toimage translation method based on generative adversarial network(GAN)has not been satisfying due to the following reasons,the training process is unstable and the irrelevant domain changes greatly,the output images are blurred in detail and low in authenticity.This paper proposes an unsupervised image-to-image translation method with self-attention and relativistic discriminator adversarial networks based on dual learning.Firstly,in the generator,self-attention mechanism is designed to build long-short-range dependency for image generation tasks.Skip-connection between low and high convolution layers help reduce the loss of feature information in irrelevant image domain.Then,in the discriminator,spectral normalization is used to prevent the gradient disappearing caused by the mutation of the discrimination ability to enhance training stability.Finally,in the loss function,the self-reconstruction consistency is added on the basis of loop reconstruction to focus on target image domain change.The relativistic adversarial loss is designed to guide the zero-sum game between generator and discriminator.The experimental results from the Horse&Zebra,Summer&Winter,and AerialPhoto&Map datasets demonstrate that compared with the current image translation methods,our method can establish a more realistic image domain mapping relationship and improve the translation quality of the generated image.
关 键 词:图像翻译 对偶学习 生成对抗网络 自注意力机制 相对鉴别 无监督学习
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.227