检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨静波 赵启军[1,2] 吕泽均 YANG Jingbo;ZHAO Qijun;LYU Zejun(College of Computer Science,Sichuan University,Chengdu 610065,China;School of Information Science and Technology,Tibet University,Lhasa 850000,China)
机构地区:[1]四川大学计算机学院,四川成都610065 [2]西藏大学信息科学技术学院,西藏自治区拉萨850000
出 处:《西安电子科技大学学报》2021年第5期30-37,共8页Journal of Xidian University
基 金:国家重点研发计划(2017YFB0802300);国家自然科学基金(61773270,61971005)。
摘 要:为了解决基于深度学习的人脸表情识别所需训练数据包含表情类别有限且训练数据规模不均衡的问题,提出了Arousal-Valence维度情感空间中基于生成对抗网络的表情图像生成方法AV-GAN,用于生成更多样且均衡的表情识别训练数据。该方法使用标记分布表示表情图像,通过引入身份控制和表情控制模块,以及对抗学习方法实现在Arousal-Valence空间中随机采样和生成表情图像。在Oulu-CASIA数据库上的评估实验显示,使用本文方法对训练数据进行数据增强比使用原训练数据的表情识别准确率可提升6.5%,证明了该方法能有效地提升非均衡训练数据下的表情识别准确率。In order to solve the problem that the training data of deep learning based facial expression recognition methods usually cover a limited part of the expression space and have an imbalanced distribution,we propose AV-GAN,a facial expression image synthesis method in Arousal-Valence dimensional emotion space,based on the generative adversarial network,to generate more diverse and balanced facial expression training data.The method uses label distribution to represent the expression for the face image,and employs an identity control module,an expression control module,and adversarial learning to realize the random sampling and generation of expression images in Arousal-Valence space.Evaluations on Oulu-CASIA database show that the accuracy of the recognition of the facial expression using the proposed method to augment training data is increased by 6.5%,compared with that using the original training data.It is proved that the proposed method can effectively improve the facial expression recognition accuracy under imbalanced training data.
关 键 词:Arousal-Valence情感模型 生成对抗网络 图像生成 数据增强 人脸表情识别
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147