基于长短期记忆神经网络的空间网格结构损伤预测和评估  被引量:3

LSTM-BASED DAMAGE PREDICTION AND ASSESSMENT OF SPATIAL FRAME STRUCTURE

在线阅读下载全文

作  者:杨渊[1,2] 崔乾道 练继建 刘红波[1] 周观根 陈志华[1] YANG Yuan;CUI Qiandao;LIAN Jijian;LIU Hongbo;ZHOU Guangen;CHEN Zhihua(School of Civil Engineering,Tianjin University,Tianjin 300072,China;Zhejiang Southeast Space Frame Co.,Ltd.,Hangzhou 311209,China;Tianjin International Engineer Institute,Tianjin University,Tianjin 300072,China;College of Water Conservancy and Hydropower,Hebei University of Engineering,Handan 056021,China)

机构地区:[1]天津大学建筑工程学院,天津300072 [2]浙江东南网架股份有限公司,杭州311209 [3]天津大学国际工程师学院,天津300072 [4]河北工程大学水利水电学院,河北邯郸056021

出  处:《工业建筑》2021年第7期203-208,共6页Industrial Construction

基  金:国家自然科学基金项目(51878443)。

摘  要:以凯威特型(K6)球面网壳为研究对象,研究基于数据驱动的空间网格结构的损伤预测和评估。通过数值模拟得到大气均匀腐蚀作用下结构模态频率的结构健康监测(SHM)模拟数据,基于长短期记忆(LSTM)神经网络,建立了结构损伤预测和评估的深度学习模型。最后,总结了基于LSTM神经网络的空间网格结构损伤预测和评估方法。结果表明:LSTM神经网络可以对SHM数据建立基于数据驱动的深度学习模型,对结构健康状态进行预测和评估。建立的模型在模拟数据上表现良好,具有良好的抗噪性,能很好地拟合SHM模拟数据趋势。利用更新后的数据集重新调整模型,可以达到持续对结构健康状态预测和评估的目的。The Kiewitt(K6)spherical reticulated shell was used as the research object to study the data-driven damage prediction and assessment of the space frame structure.By numerical simulations,Structural Health Monitoring(SHM)simulation data of structural modal frequency subjected to uniform atmospheric corrosion were obtained.A Long-Short-Term Memory(LSTM)based the deep learning model for structural damage prediction and assessment was constructed.Finally,the LSTM-based damage prediction and assessment method for the space frame structure was summarized.The results showed that LSTM could be used to establish a data-driven deep learning model for SHM data,predict and assess the structural health status.The model performed well on the simulation data with good anti-noise properties which could nicely fit SHM simulation data with a good short-term prediction effect.The updated data sets could readjust the model,so as to achieve the continuous prediction and assessment for structural health status.

关 键 词:空间网格结构 LSTM神经网络 损伤预测和评估 深度学习 

分 类 号:TU317[建筑科学—结构工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象