检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙建福[1] 王正强[1] 李宁[1] SUN Jianfu;WANG Zhengqiang;LI Ning(Shanghai Meishan Steel Co.,Ltd.,Nanjing 210039,China)
机构地区:[1]上海梅山钢铁股份有限公司,江苏南京210039
出 处:《矿业安全与环保》2021年第5期64-68,共5页Mining Safety & Environmental Protection
基 金:宝钢股份集团产学研合作项目(K20TMXY329)。
摘 要:为了实现货运火车车厢内余煤分布不同情况下,余煤清扫机器人吸风量的自适应智能调控,建立了吸风量、余煤体积量二者与风机电流之间的控制模型,根据风机电流变化趋势实现吸风量的智能调控。首先利用果蝇优化算法对概率神经网络的平滑因子进行在线优化,构建基于改进概率神经网络的风机电流精准预测模型,并根据设备特性与现场经验建立了吸风量模糊化分档调控规则库。为了验证相关理论和方法,在HCQS-75/110型火车车厢余煤清扫机器人上开展吸风量智能调控实验,结果表明:改进后的概率神经网络对风机电流预测精度达到97.4%,搭载吸风量智能调控系统的清扫机器人可实现车厢一次清扫合格率达到98.2%,并节省能耗26.5%,可以满足现场环保和能耗要求。In order to realize adaptive and intelligent control of aspirating quantity for coal residual cleaning robot under the different distribution of residual coal in the freight train carriage,a control model based on the aspirating quantity,residual coal volume and the fan current was established,and the aspirating quantity can be controlled intelligently according to the changing trend of fan current.Firstly,fruit fly optimization algorithm was applied to obtain an optimal smooth factor of probabilistic neural network.Then an accurate prediction model for the fan current based on the improved probabilistic neural network was constructed consequently.And a fuzzy step adjustment control rule base was set up by the combination of equipment characteristics and field experience.In order to verify the relevant theories and methods,an intelligent control experiment of aspirating quantity was carried out on residual coal cleaning robot for HCQS-75/110 train carriage.The results show that the prediction accuracy of fan current by the improved probabilistic neural network reaches 97.4%.The cleaning robot equipped with intelligent control system of aspirating quantity can achieve a pass rate of 98.2%and save 26.5%energy consumption,which can meet the requirements of on-site environmental protection and energy consumption.
关 键 词:余煤清扫机器人 吸风量智能调控 概率神经网络 果蝇优化算法 平滑因子 模糊化调控
分 类 号:TH48[机械工程—机械制造及自动化] X505[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49