基于改进Faster R_CNN的苹果叶片病害检测模型  被引量:30

Apple Leaf Diseases Detection Model Based on Improved Faster R_CNN

在线阅读下载全文

作  者:李鑫然 李书琴[1] 刘斌[1] LI Xinran;LI Shuqin;LIU Bin(College of Information Engineering,Northwest A&F University,Yangling,Shaanxi 712100,China)

机构地区:[1]西北农林科技大学信息工程学院,陕西杨凌712100

出  处:《计算机工程》2021年第11期298-304,共7页Computer Engineering

基  金:中国博士后科学基金(2017M613216);陕西省博士后基金(2016BSHEDZZ121);陕西省重点研发计划(2019ZDLNY07);陕西省自然科学基金(2017JM6059)。

摘  要:在实际条件下,苹果叶片病害图像背景复杂且病斑较小,难以进行实时检测。针对该问题,提出一种改进的Faster R_CNN模型。通过特征金字塔网络将具有细节信息的浅层特征和具有语义信息的深层特征融合,以提取丰富的苹果叶片病害特征。同时采用精确感兴趣区域池化,避免感兴趣区域池化中2次量化操作对病斑较小的苹果叶片病害造成像素偏差。实验结果表明,该模型能对自然条件下5种苹果叶片病害进行有效检测,平均精度均值达82.48%,与Faster R_CNN、YOLOv3和Mask R_CNN模型相比,其平均精度均值分别提高了6.01、14.12和5.06个百分点。In practice,it is difficult to detect apple leaf diseases in real time due to the complex background of apple leaf disease images and the small disease spots.To address the problem,an improved Faster R_CNN model is proposed for apple leaf disease detection.Through the Feature Pyramid Networks(FPN),the shallow features with detailed information and the deep features with semantic information are fused to extract the rich features of apple leaf disease.At the same time,the Precise Region Of Interest Pooling(PrROI Pooling)is adopted to avoid the pixel deviation caused by the two quantization operations in the Region Of Interest Pooling(ROI Pooling)to the small disease spots of apple leaf diseases.The experimental results show that the model can effectively detect five kinds of apple leaf diseases under natural conditions at an average precision of 82.48%.Compared with Faster R_CNN,YOLOv3 and Mask R_CNN,the proposed model increases the average accuracy by 6.01,14.12 and 5.06 percentage points respectively.

关 键 词:苹果叶片病害 病害检测 Faster R_CNN模型 特征金字塔网络 精确感兴趣区域池化 

分 类 号:TP753[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象