机构地区:[1]河南科技大学农学院,洛阳市植物营养与环境生态重点实验室,洛阳471023
出 处:《中国生态农业学报(中英文)》2021年第11期1857-1866,共10页Chinese Journal of Eco-Agriculture
基 金:国家重点研发计划项目(2017YFD0201700)资助。
摘 要:为了明确磷肥减量施用对石灰性土壤磷组分及其与作物磷积累量关系的影响,设置3个施磷量,按纯磷计分别为150 kg·hm^(-2)(P150)、37.5 kg·hm^(-2)(P37)和0 kg·hm^(-2)(P0),经过连续2年4季冬小麦-夏玉米轮作,采用Hedley土壤磷组分分组法,研究土壤磷组分含量的变化及其存储贡献率、输出贡献率,并采用回归分析、通径分析和结构方程模型探讨土壤关键磷组分及其与磷肥施用量、作物磷积累量间的关系。结果表明,与P37处理相比,P150处理导致土壤全磷显著增加,并显著提高阴离子交换树脂态无机磷组分(resin_Pi)、NaHCO_(3)提取态无机磷(NaHCO_(3)_Pi)、NH_(4)OAc提取态无机磷(NH_(4)OAc_Pi)、Na OH-Na_(2)S_(2)O_(6)提取态无机磷(Fe_Pi)和NaHCO_(3)提取态有机磷(NaHCO_(3)_Po)等组分含量(P<0.05)。P0处理与P37处理相比,土壤磷及其组分含量无显著变化。土壤无机磷组分和有机磷组分的存储贡献率分别为72.6%和23.8%。土壤盈余磷主要存储在HCl提取态无机磷(HCl_Pi)、Fe_Pi、NH_(4)OAc_Pi、resin_Pi和HCl提取态有机磷(HCl_Po)等组分中。土壤无机磷组分的输出贡献率为41.0%,有机磷组分的输出贡献率为56.4%。其中HCl_Po、Fe_Pi和NH_(4)OAc_Pi的输出贡献率分别为39.44%、17.36%和13.06%。HCl_Pi和resin_Pi的输出贡献率仅为1.91%和0.40%。在结构方程模型中,施磷量对Fe_Pi、HCl_Pi、NH_(4)OAc_Pi、resin_Pi、NH_(4)F_Po、NaHCO_(3)_Pi和NaHCO_(3)_Po等组分的载荷因子分别为0.078、0.077、0.061、0.036、0.018、0.015和0.012。Fe_Pi、NH_(4)OAc_Pi和HClPo等组分对作物磷积累量的载荷因子分别为0.355、0.334和-0.039。上述结果表明,石灰性土壤中,Fe_Pi、NH_(4)OAc_Pi和HCl_Po是关键磷组分,其中Fe_Pi和NH_(4)OAc_Pi在不施磷时易消耗,但也易通过施磷得到补充;HClPo有效性高,不易更新。HCl_Pi有效性低,是磷肥当季有效性低的重要原因。建议磷肥施用量的决策应以关键磷组分的存储贡献率为依�Excessive application of phosphate fertilizer wastes phosphorus resources and induces eutrophication in lakes and rivers.To study the effect of reduction of phosphorus fertilizer on phosphorus fractions in calcareous soil and its relationship with crop phosphorus accumulation, three treatments were set up, i.e., phosphorus application rates of 150 kg·h(P150), 37.5 kg·hm^(-2)(P37), and0 kg·hm^(-2)(P0). After two consecutive years of "winter wheat-summer maize" crops rotation, the changes in the contents of soil phosphorus fractions were studied using Hedley soil phosphorus fractionation method, and the storage contribution rate and output contribution rate of each fraction were also estimated. The relationship between soil phosphorus fractions contents, phosphorus fertilizer application rate, and crop phosphorus uptake amount were explored by using regression analysis, path analysis, and structural equation model. The results showed that compared with P37, P150 led to a significant increase in soil total phosphorus content. The contents of inorganic phosphorus extracted with anion exchangeresin(resin_Pi), with NaHCO_(3)(NaHCO_(3)_Pi), with NH_(4)OAc(NH_(4)OAc_Pi) and with NaOH-Na_(2)S_(2)O_(6)(Fe_Pi), and organic phosphorus extracted with NaHCO_(3)(NaHCO_(3)_Po) in P150 were significantly higher than those in P37, while the other fractions showed no significant change. P0 did not cause a significant decrease in the contents of soil phosphorus fractions. The storage contribution rates of soil inorganic phosphorus fractions and organic phosphorus fractions were 72.6% and 23.8%, respectively. Among them, the storage contribution rates of inorganic phosphorus extracted with HCl(HCl_Pi),Fe_Pi, NH_(4)OAc_Pi, resin_Pi, and organic phosphorus extracted with HCl(HCl_Po) were 24.45%, 18.1%, 13.62%, 11.15%, and 9.30%,respectively. The output contribution rate of soil inorganic phosphorus fractions was 41.0%, and that of organic phosphorus fractions was 56.4%. Among them, the output contribution rates of HCl_Po, Fe_Pi, and
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...