检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李练兵 芮莹莹 尚建伟[2] 李政宇 李铎 Li Lianbing;Rui Yingying;Shang Jianwei;Li Zhengyu;Li Duo(School of Artificial Intelligence,Hebei University of Technology,Tianjin 300130,China;Department of Oral Pathology,Tianjin Stomatology Hospital,Tianjin 300041,China)
机构地区:[1]河北工业大学人工智能与数据科学学院,天津300130 [2]天津市口腔医院口腔病理科,天津300041
出 处:《计算机应用与软件》2021年第11期219-225,共7页Computer Applications and Software
摘 要:针对实际应用中要对图片分类并对癌变图进行癌变区域定位的需求,收集天津市口腔医院典型病例,建立口腔细胞病理切片图像数据集,提出基于深度学习的诊断与分割方法。采用以DenseNet为架构的卷积神经网络对图像进行正常与癌变的分类,利用图像分块思想对高分辨率图像分块进行训练,采用迁移学习和数据增强方法减少过拟合问题的发生。分类完成后,使用以DenseNet网络作为编码结构的UNet++分割网络对判断为癌变的图像进行癌变区域定位,采用组合交叉熵方法确定损失函数进行调优。实验表明,该方法能够较好地完成口腔细胞切片图像的分类识别,识别准确率达98.46%,与金标准对比,得到了较理想的分割结果。该方法有助于口腔细胞病理自动诊断系统的开发,可用于口腔鳞癌病理辅助诊断。In view of the need to classify images and locate the cancerous region of cancerous images in practical applications, the typical cases of Tianjin Stomatology Hospital were collected, the image data set of oral cell pathology slices was established, and the diagnosis and segmentation method based on deep learning was proposed. The convolutional neural network based on DenseNet was used to classify the images into normal and canceration, and the high-resolution images were divided into patches, and the migration learning and data enhancement methods were used to reduce the occurrence of overfitting. After the classification, the UNet++ segmentation network with DenseNet network as the coding structure was used to locate the cancerous area of the image, and the combined cross entropy method was used to determine the loss function for tuning. The experimental results show that this method can complete the classification and recognition of oral cell slice images with a recognition accuracy of 98.46%, compared with the gold standard, a better segmentation result was obtained. This method is helpful for the development of automatic pathological diagnosis system of oral cell pathological and can be used for the auxiliary diagnosis of oral squamous cell carcinoma.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15