基于密文的去中心化兴趣点推荐研究  被引量:1

DECENTRALIZED MATRIX FACTORIZATION FOR POI RECOMMENDATION BASED ON CIPHERTEXT

在线阅读下载全文

作  者:张亚男 刘安[1] 彭佳 张益凡 Zhang Ya’nan;Liu An;Peng Jia;Zhang Yifan(School of Computer Science and Technology,Soochow University,Suzhou 215006,Jiangsu,China)

机构地区:[1]苏州大学计算机科学与技术学院,江苏苏州215006

出  处:《计算机应用与软件》2021年第11期322-330,337,共10页Computer Applications and Software

基  金:江苏高校优势学科建设工程资助项目(PAPD)。

摘  要:针对集中式矩阵分解模型在进行兴趣点推荐时存在的内存需求多、计算成本高、隐私泄露风险大等问题,提出基于密文的去中心化推荐模型CDMF。比起统一收集处理所有数据的传统矩阵分解推荐方法,CDMF保持用户的数据在个人终端,以防出现大规模的集中计算;结合随机游走和Paillier加密算法实现基于密文的去中心化推荐;为了提高算法的时间性能,CDMF进一步引入个人兴趣点集合。在Foursquare和Gowalla真实数据集上进行实验,实验结果从精确率、召回率及时间性能三方面证明了CDMF的有效性。该方法在保护隐私的同时,相比经典矩阵分解模型其精确率和召回率分别提高1百分点和9百分点。Matrix Factorization(MF) has many defects due to its high memory requirement, expensive computation cost, huge privacy risk and so on. This paper presents a ciphertext-based decentralized MF model(CDMF) to solve these problems. Compared with the traditional MF that collects and processes all data uniformly, the model kept the user’s data in his own terminal in order to prevent large-scale centralized computing. It combined random walk and Paillier encryption algorithm for ciphertext-based decentralized MF, followed by introducing personal POI set to improve the time performance of ciphertext algorithm. Experiments on Foursquare and Gowalla real data sets demonstrate the validity of CDMF in terms of precision, recall rate and time performance, which can improve the average precision by 1 percentage point and recall rate by 9 percentage points compared with traditional MF while privacy is protected.

关 键 词:兴趣点推荐 去中心化矩阵分解 Paillier加密 随机游走 

分 类 号:TP309[自动化与计算机技术—计算机系统结构] TP391.3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象