检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孟章 丁浩 聂守平[1] 马骏[2] 袁操今[1] Meng Zhang;Ding Hao;Nie Shouping;Ma Jun;Yuan Caojin(Jiangsu Key Laboratory for Opto-Electronic Technology,School of Physics and Technology,Nanjing Normal University,Nanjing,Jiangsu 210023,China;School of Electronic Engineering and Optoelectronic Techniques,Nanjing University of Science and Technology,Nanjing,Jiangsu 210094,China)
机构地区:[1]南京师范大学物理科学与技术学院,江苏省光电技术重点实验室,江苏南京210023 [2]南京理工大学电子工程与光电技术学院,江苏南京210094
出 处:《激光与光电子学进展》2021年第18期157-175,共19页Laser & Optoelectronics Progress
基 金:国家自然科学基金(61775097,61975081);国家重点研发计划(2017YFB0503505)。
摘 要:数字全息显微成像技术因能高精度实现定量相位成像的优势受到生物成像与材料科学领域的关注,但共轭像的存在、相位包裹的困扰以及分辨率受限等问题一直阻碍了数字全息显微术的广泛应用。近些年,深度学习作为机器学习中一种对数据特征提取进行特化的模型,在光学成像领域中被广泛应用。除用于提高成像效率外,其解决成像逆问题的潜力也不断被研究人员发掘,为成像领域开辟了一条蹊径。本文从深度学习应用于数字全息显微成像的工作原理出发,介绍它解决光学成像逆问题的思路与重要数理概念,同时对深度学习的完整实施过程进行归纳。扼要地总结了近年来深度学习对于全息重建、自动聚焦与相位恢复、全息去噪与超分辨等方面的研究进展,并对该研究领域中存在的问题与发展趋势进行展望。Digital holographic microscopy(DHM)has attracted attention in the fields of biological imaging and materials science due to its advantages in high-precision quantitative phase imaging.However,the existence of conjugate images,the problem of phase wrapping,and the limited resolution have always hindered the wide application of DHM.In recent years,deep learning,as a specialized model for data feature extraction in machine learning,has been widely used in the field of optical imaging.In addition to improving imaging efficiency,its potential to solve imaging inverse problems has also been continuously explored by researchers,opening up a new path for the optical imaging.In this paper,we start from the working principle of deep learning applied to DHM,introduces its ideas and important mathematical concepts to solve the inverse problem of optical imaging,and at the same time summarizes the complete implementation process of deep learning.A brief summary of the research progress in recent years of deep learning in holographic reconstruction,auto-focusing and phase recovery,and holographic denoising and super-resolution is given,and summarize the existing problems in this research field and look forward to the development trend of research.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249