检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周川 ZHOU Chuan(School of Business,Jiangsu University of Technology,Changzhou,Jiangsu 213001,China)
出 处:《计算机科学》2021年第S02期106-110,共5页Computer Science
基 金:江苏省自然科学基金(BK20170315)。
摘 要:针对城市共享单车分布密度优化问题,提出了一种改进樽海鞘算法。首先,将共享单车分布密度优化问题转换成函数优化问题,以等待时间、花费时间、费用及安全代价为评价指标,建立目标函数。其次,引入一维正态云模型和非线性递减控制策略来改进樽海鞘算法中引领者的搜索机制,增强对局部数据的挖掘能力;引入自适应策略来改进原算法跟随者搜索机制,避免算法陷入局部最优值。最后,通过标准测试函数以及共享单车分布密度优化仿真对所提优化算法的有效性进行了验证,结果表明:相比原樽海鞘算法、萤火虫算法及人工蜂群算法,改进的樽海鞘算法具有更好的稳定性和全局搜索能力,能够更好地实现对共享单车分布密度的优化,提升共享单车的区域利用率,对智慧交通的发展有一定的参考价值。In this article,an improved sea-squirt algorithm is proposed for the urban bike-sharing distribution density optimization problem.First,the sharing bicycle distribution density optimization problem is converted into a functional optimization problem,and the objective function of optimization is established with waiting time,time spent,cost and safety cost as evaluation indexes.Secondly,a one-dimensional normal cloud model and a nonlinear decreasing control strategy are introduced to improve the leader search mechanism in the Bottleneck algorithm to enhance the mining ability of local data;an adaptive strategy is introduced to improve the follower search mechanism of the original algorithm to avoid the algorithm falling into the local optimum.Finally,the effectiveness of the proposed optimization algorithm is verified by the standard test function and the simulation of shared bicycle distribution density.The results show that the improved Bottlenose sheath algorithm has better stability and global search capability than the original algorithm,firefly algorithm and artificial bee colony algorithm,and can better optimize the distribution density of shared bicycles and improve the regional utilization rate of shared bicycles,which is a reference value for the development of intelligent transportation.It has certain reference value for the development of intelligent transportation.
关 键 词:共享单车 分布密度优化 樽海鞘算法 自适应策略 云模型
分 类 号:TN911.1-34[电子电信—通信与信息系统] TP18[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7