基于深度学习的口腔癌预后分析  被引量:5

Prognostic analysis of oral cancer based on deep learning

在线阅读下载全文

作  者:陶谦[1] 袁哲 TAO Qian;YUAN Zhe(Department of Oral and Maxillofacial Surgery,Guanghua School of Stomatology,Hospital of Stomatology,Sun Yat-sen University,Guangdong Provincial Key Laboratory of Stomatology,Guangzhou 510055,China)

机构地区:[1]中山大学光华口腔医学院·附属口腔医院口腔颌面外科,广东省口腔医学重点实验室,广东广州510055

出  处:《口腔疾病防治》2022年第2期77-82,共6页Journal of Prevention and Treatment for Stomatological Diseases

基  金:广东省科技计划项目(2017A020211025)。

摘  要:TNM分期作为评估口腔癌患者预后的常用方法,多年临床应用证明其存在仅局限于分析患者临床病理数据的不足,难以适应现代医学的发展。深度学习(deep learning,DL)已广泛应用在人类生活的各个方面,具备高效、智能化的数据分析优势,可以充分挖掘和分析海量的医学数据,在医疗实践中的应用方兴未艾。在口腔癌预后分析方面,深度学习能够高效处理与分析分别以淋巴细胞、灰度协调矩阵(gray level coocrrencr matrix,GLCM)和基因图谱为代表的病理、放射影像和分子图像等患者资料,并据此进行准确的预后判断;通过辅助医师优化治疗方案,深度学习可以有效改善患者的生存情况。尽管目前深度学习在口腔癌患者预后研究中存在供给数据量不足、缺乏实际临床应用等缺陷,但其已展现出良好的临床应用前景。TNM(tumor node metastasis)classification is a common way to evaluate the prognosis of patients with oral cancer;however,many years of application have proven this method to be confined merely in clinical and pathologi⁃cal data and it cannot be adapted to the development of modern medicine.Deep learning(DL)has been widely used in various aspects of human life,has advantages for conducting efficient and intelligent searches and can explore and ana⁃lyze substantial medical information well.Additionally,the application of DL to medical practice is quickly increasing.In the field of oral cancer prognosis,DL can efficiently process and analyze the pathological,radiographic and molecu⁃lar data of oral cancer patients represented by lymphocytes,gray level cooccurrence matrix(GLCM)and gene maps and make accurate prognostic judgments accordingly.By assisting physicians in optimizing treatment plans,DL can effec⁃tively improve patients􀆳survival.Although DL lacks sufficient data and practical clinical application in prognostic stud⁃ies,it has shown good clinical application prospects.

关 键 词:口腔癌 深度学习 预后 TNM分期 医学影像学 分子图像 算法 模型 

分 类 号:R78[医药卫生—口腔医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象