新冠疫情对高速公路交通量的影响评价  被引量:4

Evaluation of COVID-19′s influence on expressway traffic volume

在线阅读下载全文

作  者:武亚鹏 李慧颖 卢冬生 许熳灵 WU Yapeng;LI Huiying;LU Dongsheng;XU Manling(Central South Survey Design Institute Group Co.,Ltd.,Wuhan 430073,China)

机构地区:[1]中南勘察设计院集团有限公司,湖北武汉430073

出  处:《交通科技与经济》2021年第6期1-6,共6页Technology & Economy in Areas of Communications

基  金:国家自然科学青年基金项目(51808187)。

摘  要:采用时间序列分析中的ARIMA模型对湖北省某高速公路2020年交通量本底趋势值(不考虑疫情影响)进行预测,并通过分析疫情危机的生命周期,将此次新冠疫情危机分为征兆期、爆发期、高峰期、后疫情期4个阶段,对各阶段中收费车流量进行统计分析,计算交通量损失率,判断此次疫情对高速公路交通量的影响程度。选取经济指标、感染人数等相关因素,采用主成分分析、线性回归及曲线估计等方法,建立疫情影响下高速公路交通量短时预测模型,模型误差在±5%以内为可接受范围。该模型能够帮助政府主管部门及高速公路运营管理单位对交通量发展趋势进行准确判断,有利于相关应急措施的制定。In this paper,ARIMA model of time series analysis was used to predict the background trend value of traffic volume(regardless of the impact of epidemic situation)of an expressway in Hubei Province in 2020.By analyzing the life cycle of the epidemic crisis,the COVID-19 crisis was divided into four stages,namely,the symptom period,the outbreak period,the peak period and the post epidemic period.The traffic volume of the expressway in each stage was statistically analyzed,the loss rate was calculated,and the impact of the epidemic on the traffic volume of the expressway was preliminarily judged.Then the economic indicators,the number of infected people and other related factors were selected as independent variables.In this paper,principal component analysis,linear regression,curve estimation and other methods were used to establish a short-term prediction model of expressway traffic volume under the influence of epidemic situation.The model error is within,which is acceptable.This model can help government departments and expressway operation and management units to accurately judge the development trend of traffic volume,so as to facilitate the formulation of relevant emergency measures.

关 键 词:新冠疫情 高速公路 本底趋势值 损失率 主成分分析 曲线拟合 交通量预测 

分 类 号:U491[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象