检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:云坡 唐文之 黄荷暑[2] YUN Po;TANG Wenzhi;HUANG Heshu(School of Economics and Management, Hefei University, Hefei 230601, China;School of Business, Anhui University, Hefei 230601, China)
机构地区:[1]合肥学院经济与管理学院,安徽合肥230601 [2]安徽大学商学院,安徽合肥230601
出 处:《安徽农业大学学报(社会科学版)》2021年第5期48-57,共10页Journal of Anhui Agricultural University:SOC.SCI.
基 金:教育部人文社会科学研究青年基金项目“基于双向多层循环神经网络时变高阶矩传染的碳金融资产定价研究”(21YJC790152);国家自然科学基金青年项目“多种低碳融资方式下供应链减排运作与契约协调机制研究”(71904041)。
摘 要:有效的碳价预测有助于碳市场以较低成本解决环境问题,实现碳排放减少的目标。现有研究忽略市场不对称和极端因素对碳价的时变高阶矩冲击关系,预测准确性存在质疑。基于碳价非对称性、极端冲击敏感性强以及时变波动等专属特征,构建新的机器学习碳价预测模型NAGARCHSK-LSTM。研究显示,NAGARCHSK-LSTM模型能有效捕捉碳价时变高阶矩特征,碳价预测精度和鲁棒性均优于其他基准模型,特别是模型长期预测优势得到验证。研究为投资者研判市场行情、开展价格分析提供技术手段。Effective carbon price prediction can help the carbon market to solve environmental problems at a lower cost and achieve less carbon emissions.Existing studies ignore the impact of market asymmetry and extreme factors on carbon price with time-varying higher-order moments,so the accuracy of prediction is questionable.Based on specific characteristics such as carbon price asymmetry,high sensitivity to extreme shock and time-varying volatility,a new machine learning carbon price prediction model NAGARCHSK-LSTM is constructed.The results show that the proposed model can effectively capture the time-varying higher-order moment characteristics of carbon price.In terms of accuracy of carbon price prediction and robustness,the proposed model is better than other benchmark models,and the long-term prediction advantage of the model has been verified in particular.To sum up,our research provides a technical means of judging market conditions and carrying out price analysis for investors.
关 键 词:碳价预测 时变高阶矩 NAGARCHSK模型 LSTM模型
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249