检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马鑫[1,2] 李旭峰[1,2] 文冬光[1] 罗兴旺[3] 刁玉杰[1,2] 杨国栋 尹书郭 曹伟[6] MA Xin;LI Xufeng;WEN Dongguang;LUO Xingwang;DIAO Yujie;YANG Guodong;YIN Shuguo;CAO Wei(Center for Hydrogeology and Environmental Geology Survey,CGS,Baoding,Hebei 071051,China;Key Laboratory of Carbon Dioxide Geological Storage of China Geological Survey,Baoding,Hebei 071051,China;Exploration and Development Research Institute of Zhundong Oil Production Plant,Petro China Xinjiang Oilfield Company,Fukang,Xinjiang 831511,China;School of Resource and Environmental Engineering,Wuhan University of Science and Technology,Wuhan,Hubei 430081,China;Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources,Wuhan University of Science and Technology,Wuhan,Hubei 430081,China;Institute of Geology of Pudong Oil Production Plant,Sinopec Zhongyuan Oilfield,Puyang,Henan 457001,China)
机构地区:[1]中国地质调查局水文地质环境地质调查中心,河北保定071051 [2]中国地质调查局二氧化碳地质储存重点实验室,河北保定071051 [3]中国石油新疆油田公司准东采油厂勘探开发研究所,新疆阜康831511 [4]武汉科技大学资源与环境工程学院,湖北武汉430081 [5]武汉科技大学冶金矿产资源高效利用与造块湖北省重点实验室,湖北武汉430081 [6]中国石化中原油田濮东采油厂地质研究所,河南濮阳457001
出 处:《水文地质工程地质》2021年第6期196-205,共10页Hydrogeology & Engineering Geology
基 金:国家重点研发计划项目(2019YFE0100100);国家自然科学基金项目(41702284,41602272);中国地质调查局地质调查项目(DD20160307);湖北省自然科学基金项目(2019CFB451);冶金矿产资源高效利用与造块湖北省重点实验室开放基金项目(2020zy003)。
摘 要:二氧化碳地质封存联合深部咸水开采技术(CO_(2)-EWR)被认为是有效的碳减排途径之一。在新疆准东地区率先开展CO_(2)-EWR技术,可在实现CO_(2)减排的同时获得咸水,在一定程度上缓解当地的水资源短缺问题,取得环境经济双重效益。以往研究大多以概化模型为主,缺乏工程实践依托,根据准噶尔盆地东部CO_(2)源汇匹配适宜性评价结果,基于我国首个CO_(2)-EWR野外先导性工程试验场地资料,构建拟选CO_(2)-EWR场地西山窑组三维(3D)非均质模型开展了场地尺度CO_(2)-EWR技术潜力研究。研究表明,拟选场地CO_(2)理论封存量为1.72×10^(6)(P50)t,动态封存量为2.14×10^(6) t。采用CO_(2)-EWR技术可实现CO_(2)动态封存量11.18×10^(6) t,较单独CO_(2)地质封存提升5.22倍,同时可增采咸水资源10.17×10^(6) t,CO_(2)采水比率为1∶0.91。同时,该技术可有效缓解因CO_(2)大量注入引起的储层压力累积,提高CO_(2)封存效率,增加咸水开采潜力。本研究可为新疆准东地区实施规模化CO_(2)地质封存联合深部咸水开采工程提供理论依据和技术支撑。CO_(2) geological storage combined with saline recovery(CO_(2)-EWR)is considered to be one of the effective storage methods.Taking the lead in carrying out CO_(2)-EWR technology in the eastern Junggar of Xinjiang can achieve CO_(2) emission reduction and mean while produce saline water,which can alleviate the local water resources shortage problem to a certain extent,and obtain dual benefits of environment and economy.Previous research mainly focused on generalized models,and the support of engineering practices is lacking.Based on the evaluation results of the suitability of CO_(2) source-sink matching in the eastern Junggar Basin and the geological data of the first CO_(2)-EWR field pilot test site in China,a 3D heterogeneous model of the Xishanyao Formation of the CO_(2)-EWR test site in the eastern Junggar Basin is constructed to study the potential of the CO_(2)-EWR technology.The results show that the the oretical storage capacity of CO_(2) at the test site is 1.72×10^(6)(P50)tons,and the dynamic storage capacity is 2.14×10^(6) tons.When the CO_(2)-EWR technology is adopted,the CO_(2) dynamic storage capacity can reach 11.18×10^(6) tons,which is 5.22 times the CO_(2) geological storage only,and may increase the production of the saline water resources by 10.17×10^(6) tons with a mass ratio of 1 to 0.91 of CO_(2) sweeping out saline water.Meanwhile,the CO_(2)-EWR technology can effectively slow down the accumulation of reservoir pressure caused by the massive injection of CO_(2),improve the efficiency of CO_(2) storage,and increase the saline water production potential.This study can provide theoretical basis and technical support for the implementation of large-scale CO_(2) geological storage combined with deep saline water production project in the eastern Junggar of Xinjiang.
关 键 词:深部咸水层 二氧化碳联合深部咸水开采 场地尺度 潜力评估 准噶尔盆地
分 类 号:P641.5[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.134.104.224