新型电力系统背景下可再生能源参与电力市场交易策略研究  被引量:11

Trading Strategy Research of Renewable Energy Participating in Electricity Market under New Power System

在线阅读下载全文

作  者:樊东 毛锐 文旭 罗保松 夏春 Fan Dong;Mao Rui;Wen Xu;Luo Baosong;Xia Chun(Southwest Branch of State Grid Corporation of China, Chengdu 610041, Sichuan, China)

机构地区:[1]国家电网有限公司西南分部,四川成都610041

出  处:《四川电力技术》2021年第5期64-70,共7页Sichuan Electric Power Technology

摘  要:随着可再生能源接入比例和规模的扩大,可再生能源参与电力市场交易,多维度协同消纳正逐渐成为可再生能源并网发展趋势。从源荷两侧选取可再生能源场站、传统发电企业、电网企业等典型电力市场交易参与方,建立多方交易策略模型。利用合作型协同进化遗传算法求解纳什均衡,对各参与方的成本收益进行效益分析,为典型电力市场交易场景的多方交易策略模型的建立提供基础。通过算例计算分析表明,风电商与电动汽车用户联合组成虚拟电厂,参与电力市场交易所获得的利润比其单独参与电力市场的利润高出27.5%,说明虚拟电厂在充分利用风电资源的同时,还能调用电动汽车电源存储能力,创造更大的经济价值,具有更强的市场竞争力。With the expansion of the proportion and scale of renewable energy access,the participation of renewable energy in electricity market transaction and the multi-dimensional collaborative consumption are gradually becoming a development trend.It is proposed to select the typical trading subjects of electricity market,such as renewable energy stations,conventional power generation enterprises and power grid enterprises,from both sides of source and charge,and establish a multi-party trading strategy model.CCGA is adopted to solve the Nash equilibrium,and the efficiency analysis of cost and benefits of each participant is carried out,which provides the basis for the establishment of a multilateral trade policy model in typical electricity market transaction scenario.The example shows that the profit of participating in electricity market jointly is higher than that of participating in electricity market alone,which indicates that virtual power plant(VPP)can reasonably use the storage capacity of electric vehicle(EV)power supply,make full use of wind power resources,and become more competitive in the market.

关 键 词:可再生能源 电力市场 多方交易策略 协同遗传进化算法 

分 类 号:TM72[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象