检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:倪欢 牛晓楠 李云峰[2] 郝娇娇 NI Huan;NIU Xiaonan;LI Yunfeng;HAO Jiaojiao(School of Remote Sensing&Geomatics Engineering,Nanjing University of Information Science&Technology,Nanjing 210044,Jiangsu,China;Nanjing Center,China Geological Survey,Nanjing 210016,Jiangsu,China)
机构地区:[1]南京信息工程大学遥感与测绘工程学院,江苏南京210044 [2]中国地质调查局南京地质调查中心,江苏南京210016
出 处:《地质通报》2021年第10期1656-1663,共8页Geological Bulletin of China
基 金:国家自然科学基金青年项目《联合分布约束的激光雷达点云空间上下文建模与分类》(批准号:41801384);《基于空间先验与贝叶斯决策的高分遥感影像城市地表覆盖变化检测》(批准号:41901310));江苏省自然科学青年基金项目《基于空间可变混合模型的激光雷达点云场景分割》(编号:BK20180795);中国地质调查局项目《安庆多要素城市地质调查》(编号:DD20189250);《华东地区自然资源综合调查》(编号:DD20211384)。
摘 要:遥感作为一种可以快速、大范围获取地表覆盖信息的技术手段,为复杂的自然资源调查任务提供了可靠的数据来源。针对山体确界问题,以遥感卫星影像为数据支撑,采用非监督的统计学习方法,为山体特征建模。然后,采用DBSCAN算法和边缘检测思想,识别山体区域,并提取山体边界。该方法不依赖于人工标记真值,实现了山体边界的全自动识别。实验采用安庆市Landsat 8遥感卫星影像数据,有效识别了安庆市境内的山体,并提取山体边界。通过定性和定量化分析,验证了方法的可靠性,证明了遥感技术和统计学习理论在自然资源调查领域的应用潜力。该研究方法和结果能够为安庆市明确山体范围,界定山体的完整性与山体保护规划工作提供理论支撑。Remote sensing,a technology used for quickly and extensively acquisition of land cover information,provides a reliable data source for complex natural resource survey.Aiming at the problem of mountain boundary recognition,an unsupervised statistical learning method was proposed to extract mountain features using remote sensing satellite images for modeling of mountain features.Specifically,DBSCAN algorithm and edge detection ideas were used to identify the mountain area and extract the mountain boundary.This approach recognizes the mountain boundary automatically,which does not rely on marking the ground truth manually.In the experiment,the Landsat 8 remote sensing satellite image data of Anqing City were used to effectively identify the mountainous area and extract the boundaries of the mountains.Through qualitative and quantitative analysis,the reliability of the proposed method was verified.Moreover,it proved the application potential of remote sensing technology and statistical learning theory in the field of natural resource survey.
分 类 号:P627[天文地球—地质矿产勘探] P628.2[天文地球—地质学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3