基于增量状态空间模型的双层预测控制  被引量:2

Double-layered Predictive Control Based on Incremental State-space Model

在线阅读下载全文

作  者:吕沛龙 丁宝苍[1] 王丽[1,2] 王勇[1] LV Pei-long;DING Bao-cang;WANG Li;WANG Yong(School of Automation Science and Engineering,Xi'an Jiaotong University Xi'an 710049,China;College of Mechanical and Electronic Engineering,Tarim University,Alar 843300,China)

机构地区:[1]西安交通大学自动化科学与工程学院,陕西西安710049 [2]塔里木大学机械电气化工程学院,新疆阿拉尔843300

出  处:《控制工程》2021年第10期1923-1930,共8页Control Engineering of China

基  金:国家自然科学基金资助项目(U1509209);国家重点研发计划资助项目(2017YFA0700300)。

摘  要:为了提高对干扰系统建模的准确性,将被控输出作为状态建立增广的状态方程,提出基于增量状态空间模型和人工干扰模型的双层模型预测控制方案。该方案给出了增广模型的可检测性条件。利用稳态Kalman滤波得到增广的状态估计,在Kalman预报中对当前输出值和估计值的偏差进行补偿,获得准确的开环预测值。引入稳态目标计算获得最优的目标值以保证无静差控制。采用增量状态空间模型避免了工作平衡点的影响。仿真算例证实该方案能保证系统在有干扰出现的情况下可靠地跟踪稳态目标值,验证了该方案的有效性。In order to improve the model accuracy for the disturbance system, the controlled output of the system is taken as a state to establish an augmented state equation in this paper. A new scheme is proposed for double-layered model predictive control based on the incremental state-space model and the artificial disturbance model. In the scheme, the conditions that guarantee detectability of the augmented model are provided. The augmented state estimate values are obtained by steady-state Kalman filter. The deviation between the current output value and the estimated value is compensated to obtain an accurate open-loop prediction value by Kalman predictor. The steady-state target calculation is introduced to obtain the optimal target value to ensure no static error control. The influence of equilibrium points is avoided by the incremental state-space model. The simulation example shows that the system can reliably track the steady-state target value and demonstrates the effectiveness of the proposed scheme.

关 键 词:双层模型预测控制 增量模型 状态空间法 人工干扰 稳态目标 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象