基于最优杂波抑制的外辐射源雷达参考信号可信重构  被引量:1

Reference Signal Trusted Reconstruction for Passive Radar Based on Optimal Clutter Rejection

在线阅读下载全文

作  者:张勋[1] 万显荣[1] 易建新[1] 龚子平[1] ZHANG Xun;WAN Xianrong;YI Jianxin;GONG Ziping(School of Electronic Information,Wuhan University,Wuhan 430072,China)

机构地区:[1]武汉大学电子信息学院,武汉430072

出  处:《电子与信息学报》2021年第11期3193-3200,共8页Journal of Electronics & Information Technology

基  金:国家自然科学基金(61931015,62071335,61831009);湖北省科技创新项目(2019AAA061)。

摘  要:参考信号重构是数字电视外辐射源雷达信号处理的关键技术之一,重构信号质量直接影响监测信号中时域杂波抑制效果。针对工程应用中重构的参考信号与实际发射信号失配的问题,该文以监测信号时域杂波抑制效果最优为指标,提出一种基于“解调-重调制”的参考信号可信重构方法。首先介绍参考信号重调制方法并建立基于非理想发射信号的信号模型;然后推导了重调制参考信号与监测信号时域杂波抑制效果间的理论关系,基于杂波抑制效果最优的准则,得到可信重构参考信号;最后仿真和实测数据验证了该参考信号可信重构方法的有效性。Reference signal reconstruction is one of the key technologies for signal processing of passive radar based on digital TV signals.The quality of the reconstructed signal affects directly the time-domain clutter suppression effect of the surveillance signal.To solve the problem that the reconstructed reference signal can not match the actual transmitted signal,this paper proposes a reference signal trusted reconstruction method based on“Demodulation-Remodulation”with the indicator that the optimal time-domain clutter suppression effect of the surveillance signal.First,the reference signal remodulation method is introduced and a signal model is established based on the non-ideal transmitted signal.Then,the theoretical relationship between the remodulation reference signal and the time-domain clutter suppression of the surveillance signal is derived.Based on the criterion of the optimal clutter suppression,the trusted reconstruction of the reference signal is obtained.Finally,simulation and field experiment verify the effectiveness of the reference signal trusted reconstruction method.

关 键 词:外辐射源雷达 参考信号重构 杂波抑制 可信重构 调制误差比 

分 类 号:TN958.57[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象