检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘小龙[1] LIU Xiaolong(School of Business Administration,South China University of Technology,Guangzhou 510641,China)
出 处:《电子与信息学报》2021年第11期3247-3256,共10页Journal of Electronics & Information Technology
基 金:中央高校基本科研业务费(XYZD201911)。
摘 要:鲸鱼优化算法(WOA)相较于传统的群体智能优化算法,具有较好的寻优能力和鲁棒性,但仍存在全局寻优能力有限、局部极值难以跳出等问题。针对上述不平衡问题,该文提出一种多种群纵横双向学习的种群划分思路,子群相互独立,子群内个体受到来自横向和纵向两个方向的最优值影响,从而规避局部最优,在探索和开发之间取得均衡。对纵向种群的所有个体,该文提出一种线性下降概率的个体置换策略,促进不同子群的信息流动,加快算法收敛。基于不同个体的历史进化信息,来进行策略算子选择,从而区别于现有基于随机数的策略算子选择方法。利用基准函数进行跨文献对比,数值结果表明该文算法具有很好的优越性和稳定性,在大多数问题上都获得了全局极值,具有较好的问题适用性。Compared with traditional swarm intelligence optimization algorithms,the Whale Optimization Algorithm(WOA)has better optimization capabilities and robustness,but there are still problems such as limited global optimization capabilities and difficulty in jumping out of local extremes.Considering the abovementioned imbalance problem,a multi-group population division idea with vertical and horizontal bidirectional learning is proposed.The subgroups are independent of each other,and the individuals in the subgroups are affected by the optimal values from both the horizontal and vertical directions,thereby avoiding the local optimal and getting the balance between exploration and development.For all individuals in the vertical population,an individual replacement strategy with linearly decreasing probability is proposed to promote the information flow of different subgroups and accelerate the algorithm convergence.The selection of strategy operators is based on the historical evolution information of different individuals,which is different from the existing strategy operator selection methods based on random numbers.The benchmark function is used for cross-document comparison.The numerical results show that the algorithm in this thesis has good superiority and stability.It obtains global extreme on most problems and has good problem applicability.
关 键 词:鲸鱼优化算法 多种群纵横双向学习 子群个体互换 历史信息
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3