检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Bi Luo Peng Wu Jiafeng Zhang Liang Cao Chunhui Wang Bin Lu Bao Zhang Xing Ou
机构地区:[1]National Engineering Laboratory for High Efficiency Recovery of Refractory Nonferrous Metals,School of Metallurgy and Environment,Central South University,Changsha,410083,China [2]Key Laboratory on Fuel Cell Technology of Guangdong Province,School of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou,510641,China [3]Institute of Advanced Magnetic Materials,College of Materials&Environmental Engineering,Hangzhou Dianzi University,Hangzhou,310018,China
出 处:《Nano Research》2021年第11期3854-3863,共10页纳米研究(英文版)
基 金:This work was financially supported by the National Natural Science Foundation of China(Nos.51902347,51822812,51772334,and 51778627);Natural Science Foundation of Hunan Province(No.2020JJ5741).
摘 要:Molybdenum disulfide (MoS_(2)) has received enormous attentions in the electrochemical energy storage due to its unique two-dimensional layered structure and relatively high reversible capacity. However, the application of MoS_(2) in potassium-ion batteries (PIBs) is restricted by poor rate capability and cyclability, which are associated with the sluggish reaction kinetics and the huge volume expansion during K+ intercalation. Herein, we propose a two-dimensional (2D) space confined strategy to construct van der Waals heterostructure for superior PIB anode, in which the MoS_(2) nanosheets can be well dispersed on reduced graphene oxide nanosheets by leveraging the confinement effect within the graphene layers and amorphous carbon. The strong synergistic effects in 2D van der Waals heterostructure can extremely promote the electron transportation and ions diffusion during K+ insertion/extraction. More significantly, the 2D space-confinement effect and van der Waals force inhibit polysulfide conversion product dissolution into the electrolyte, which significantly strengthens the structural durability during the long-term cycling process. As anticipated, the as-synthesized the “face-to-face” C/MoS_(2)/G anode delivers remarkable K-storage performance, especially for high reversible capacity (362.5 mAh·g^(-1) at 0.1 A·g^(-1)), excellent rate capability (195.4 mAh·g^(-1) at 10 Ag^(-1)) and superior ultrahigh-rate long-cycling stability (126.4 mAh·g^(-1) after 4000 cycles at high rate of 5 A·g^(-1)). This work presents a promise strategy of structure designing and composition optimization for 2D layered materials in advanced energy storage application.
关 键 词:van der Waals heterostructure space confinement molybdenum disulfide anode materials potassium-ion batteries
分 类 号:TM912[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.139.85.113